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ABSTRACT

The discovery of a Higgs boson with a mass of 125 GeV at the Large Hadron Collider (LHC)
experiments opened the door to investigating the new physics beyond the standard model.
While the standard model (SM) of particle physics is quite consistent with various experi-
mental data, there remain the problems that the SM does not explain. Supersymmetric grand
unified theories (SUSY GUTs) are one of the promising extensions of the SM. The framework
of SUSY GUTs gives a big-picture of our world below the Planck scale at which quantum
gravitational effects become important. Proton decay is a significant phenomenon to verify
the SUSY GUTs.

The SUSY GUTs also have several problems. The familiar one is a kind of fine-tuning
problem called the Doublet-Triplet Splitting problem. The missing partner model which
solves this problem requires higher-dimensional representation Higgs multiplets. Various
exotic models containing higher-dimensional multiplets have been proposed in order to
solve problems in the SUSY GUTs.

In the context of the SUSY GUTs, supersymmetric standard models (SUSY SMs) are the
low-energy effective theories of them. Lately, the low-energy theories have been constrained
because of no signature of new particles at the LHC. After the Higgs discovery, some modifi-
cations of the minimal SUSY SM have been proposed in order to explain the observed Higgs
mass and no signature of the SUSY particles. In this thesis, we consider the models with
extra vector-like multiplets and ones with heavy scalar SUSY particles (sfermions). These
models have been focused attention on because they predict diverse phenomenology.

The low-energy observables associated with hadron physics are divided into two parts:
the Wilson coefficients and the hadron matrix elements. The former includes the effects of
UV physics, such as SUSY GUTs, as radiative corrections. Next-Leading order (NLO) cor-
rections to the Wilson coefficients have already been performed partially. The latter requires
non-perturbative calculations due to the strong coupling at the hadronic scale. The lattice
simulation of the hadron matrix elements has also been progressing.

In this thesis, we have derived the threshold corrections for proton lifetime, which are
comparable with the other NLO correction, but have not been estimated up to present. Fur-
thermore, we have estimated the size of threshold corrections at the GUT scale and the SUSY
scale in various models numerically.

For the threshold corrections at the SUSY mass scale, the effect is found to be about a few
percent in decoupled sfermion scenarios. The threshold effect at the GUT scale is strongly
model dependent. The effect is less prominent in the minimal SUSY SU(5) model with
extra vector-like matters in spite of the large unified coupling. We, however, have found
that proton lifetime gets longer by about 60% in the missing partner model.
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Chapter 1

Introduction

1.1 Overview and Organization

The standard model (SM) of particle physics is a phenomenological model concerning fun-
damental interactions of matters and force carriers. This model was proposed in the late
1960s and was developed from the 1960s to the 1970s [1–7]. Many experiments and observa-
tions have verified it so far. The ATLAS and CMS collaborations reported that a scalar boson
was discovered at the LHC experiment in July 2012 and it was totally consistent with the SM
Higgs boson [8, 9]. The collaborations have also reported there is no remarkable deviation
from predictions of the SM in spite of their efforts.

However, there is strong evidence that a model beyond the SM (BSM) is needed. Indeed,
several experiments and observations have already shown the evidence of the BSMs. First,
the mass of neutrinos should not be zero for explaining the neutrino oscillation experiments
[10–23] while neutrinos are massless in the SM. The standard cosmology also gives good
explanation for the thermal history of the Universe. The latest observation by the Planck
satellite requires sufficient densities of non-baryonic matters and hypothetical energy, which
are called “dark matter” (DM) and “dark energy”, respectively [24]. In particular, there is no
DM candidate in the SM, and hence a new particle (stable and electrically neutral particle)
and/or a massive object (such as primordial black hole) is required. The SM does not also
explain the baryon-antibaryon asymmetry in the Universe, that is Sakharov’s condition [25]
is not satisfied within the SM.

From theoretical aspects, we have also expected the new physics beyond the SM to ex-
plain some problems. One of them is known as the hierarchy problem in the Higgs boson
mass parameter, which requires the precise cancellation between the bare parameter and
radiative corrections if the SM is valid up to the Planck scale. The charge quantization of
matters is also one of the unexplained problems. In fact, the arbitrary real number is gener-
ically allowed as a U(1) charge while all electric charges for matters are discretized in the
SM.

As we will discuss in Section 1.3, supersymmetry (SUSY) is a promising candidate of
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1.1. OVERVIEW AND ORGANIZATION

the extensions of the SM. New particles, which have opposite spin-statistics of the SM par-
ticles, are naturally introduced by extending the space-time to the one with Grassmann co-
ordinates. These new particles are called “sparticles” and play important roles to solve the
problems if the mass scale of sparticles is around a few TeV. The scalar partner of top quark
ensures the cancellation of the Higgs mass parameter by virtue of the non-renormalization
theorem in SUSY field theories. The lightest fermionic partner of the SM bosons become a
candidate of the DM.

The LHC measurements of properties of the SM particles, especially the Higgs boson,
open the door to exploring the BSM. The observed mass of the Higgs boson is 125 GeV,
which is the combined result from the ATLAS and CMS collaborations [26]. In the minimal
setup of the SUSY SM (MSSM), the mass of the Higgs boson should be lighter than the Z
boson at tree-level. This fact gives further information about the SUSY SM: large quantum
corrections to the Higgs boson mass are required in the MSSM. Alternatively, the Higgs mass
is lifted up by extra fields coupling with the Higgs multiplets in the extended MSSM. For
instance, familiar extensions are the following: extra vector-like matter scenarios [27, 28],
specific mass spectrum [29], and high-scale/split SUSY scenarios [30, 31].

The SUSY SM also implies the existence of a kind of underlying theories. Actually, by us-
ing the low-energy values for the SM gauge couplings and the renormalization group (RG)
running, the strength of the couplings converges at very high energy (∼ 1016 GeV). This im-
plies that the SM gauge interactions unify into a single gauge interaction. This framework
is called “Grand Unified Theory” (GUT).

In this framework, the SM gauge group SU(3)C ⊗ SU(2)L ⊗U(1)Y originates from the
spontaneous breaking of the unified gauge group such as SU(5) [32], SO(10) [33,34], E6 [35],
and so on. Although this framework gives solutions to some problems in the SM, it also
causes new problems; Doublet-Triplet Splitting Problem that is a kind of fine-tuning prob-
lem, Yukawa Unification, and so on. In order to resolve these problems, several extended
models have been proposed so far, which will be discussed in Chapter 2. For instance, the
missing-partner model is known as the model solving the doublet-triplet splitting problem.
Such extended models often require higher-dimensional representation fields, and they may
lead to the large quantum corrections to the observables.

The GUTs cannot be testable by producing new particles directly since the new parti-
cles obtain their masses through the GUT-breaking vacuum expectation values and their
mass scale lies around 1016 GeV. They, on the other hand, are testable by indirect mea-
surements such as Nucleon Decay. Indeed, many unified models predict the presence of
the baryon-number violating processes owing to the unified description of matters. At the
Kamioka observatory, some unification scenarios have been excluded; for instance, the non-
supersymmetric SU(5) grand unified model with the low unification scale 1014 GeV and the
minimal SUSY SU(5) GUT with TeV-scale SUSY models (for instance, see review [36]).

The important decay modes in the SUSY SU(5) GUTs are the following. One is that
a proton decays into a neutral pion and a positron, another is that a proton decays into a
charged Kaon and an anti-neutrino. The former arises from an extra gauge boson mediation,
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CHAPTER 1. INTRODUCTION

on the other hand, the latter arises from an extra fermion mediation. The latter decay mode
strongly constrains the SUSY GUT models since proton lifetime relates to the masses of
sparticles. In fact, the minimal SUSY SU(5) GUT with TeV-scale sparticles is excluded by the
Super-Kamiokande experiment [37,38]. Several ways to evade from the constraint have been
proposed: imposing global continuum or discrete symmetries, embedding into an extra-
dimension, PeV-scale SUSY, and so on.

The Super-Kamiokande experiment has recently reported the lower limits on the decay
modes [39, 40]. The partial lifetime for p → e+ + π0 should be longer than 1.6× 1034 years
and the current lower limit on the partial lifetime for p → K+ + ν mode is 6.6× 1033 years.
The sensitivity of the next generation detector at the Kamioka mine, the Hyper-Kamiokande,
has been studied; in particular, it may achieve the sensitivity to the proton lifetime which is
about ten times as long as the current bounds [36]. The fact implies that there is the potential
to discover proton decay signature in the future experiment.

There have been theoretical developments in evaluating the proton decay rate. One
of them is getting to control uncertainty of the hadron matrix elements by lattice simula-
tions [41]. It is expected that errors in the lattice simulations will be reduced in the future.
There is a large hierarchy between the hadronic energy scale and the unification scale. The
energy hierarchy leads to significant corrections, which are referred to as renormalization
group (RG) evolution, to observables. About three decades ago, leading-order (LO) cor-
rections to the effective Hamiltonian were estimated for certain decay modes at the vari-
ous energy scales: SM corrections [42], supersymmetric SM corrections [43], and quantum
chromo-dynamics (QCD) corrections [44]. The next-leading-order (NLO) calculations have
been partially carried out in several literature: SM corrections [45], QCD corrections [46],
and supersymmetric corrections [47]. In the NLO calculation, not just the RG evolutions
but also the finite corrections, which are also called “Threshold Corrections”, will not be
negligible. There has been no estimation of the threshold corrections to the baryon-number
violating processes yet.

In this thesis, we derive the one-loop threshold correction to the baryon-number violat-
ing operators, analytically. Since, however, the finite corrections strongly depend on the
mass spectrum of integrated degrees of freedom, we focus on specific models: the min-
imal SUSY SU(5) GUT model with and without extra matters and the missing-partner
SUSY SU(5) model. In particular, we focus on the corrections to a specific decay mode,
p → e+ + π0 mode, which has less dependence on the GUT models. Further, operators
which give rise to p → K+ + ν decay are protected from quantum corrections by the non-
renormalization theorem [48] in the supersymmetric field theories.

Quantum corrections to observables are often enhanced in some extended models. In-
deed, in extra vector-like matter scenarios [27, 28], the gauge couplings become larger at
the GUT scale. It is naïvely expected that radiative corrections via the gauge couplings are
sufficient to affect observables. The other is the GUT models including large-dimensional
representation Higgs fields. For instance, in order to realize the observed Yukawa couplings,
large representation fields are used: a 45-dimensional field in SU(5) models [49], 120, 126
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1.2. STANDARD MODEL

and 210-dimensional fields in SO(10) models (See Refs. [50–52]). Due to the large degrees
of freedom, the effects of quantum corrections are increased.

In this thesis, we focus on the nucleon decay operators in the specific SUSY SU(5) GUT
models where the radiative corrections are enhanced: the minimal SUSY SU(5) GUT model
with extra vector-like matters and the missing-partner SUSY SU(5) GUT model. In the
former model, as we mentioned, it is expected the large unified coupling at the GUT scale
affects to proton lifetime. In the latter model, an SU(5) gauge group is broken by non-
minimal representation, 75-dimensional Higgs. In this model, it is also supposed many
fields supply the large radiative corrections to the prediction of proton lifetime.

In our study, we adopt a supergraph technique [53–56]. “Supergraph” is an extension of
the Feynman-graph calculation on superspace which is the extended spacetime with Grass-
mann coordinates. Since SUSY requires partner particles, one should calculate more dia-
grams in the SUSY GUTs at even one-loop level. In the supergraph technique, we treat
multiplets related to each other by SUSY as a single field, called “superfield”. Therefore, it is
suitable to use the supergraph technique in order to calculate corrections to the observables
in the SUSY GUTs.

Organization of this thesis

This thesis is organized as follows. In this chapter, we briefly introduce the standard model
of particle physics and its supersymmetric extension. The brief review of supersymmetric
grand unification models is given in Chapter 2. In this chapter, we also discuss proton decay
in the SUSY GUTs. We devote Chapter 3 to our derivation of the threshold corrections to the
baryon-number violating operators at the scales where the SUSY particles and GUT particles
are decoupled. Numerical studies of the threshold effects on proton lifetime are also shown
in the last section of this chapter. Finally, we conclude this thesis in Chapter 4.

1.2 Standard Model

We know that our world consists of elementary particles; quarks, leptons, gauge bosons,
and Higgs particle. The interactions and dynamics among the particles are described by the
quantum field theory on the four-dimensional space-time. The fundamental theory around
the Fermi scale (∼ 102 GeV) is called the standard model (SM). The Lagrangian of the SM
is based on the gauge principle and the renormalizability. The SM, in particular, is a gauge
theory with a product group SU(3)C⊗SU(2)L⊗U(1)Y. The SM Lagrangian is decomposing
into four parts; the matter kinetic terms Lmatter, the gauge kinetic terms Lgauge, the scalar
kinetic terms and the scalar potential LHiggs, and Yukawa interactions LYukawa.

LSM = Lmatter + Lgauge + LHiggs + LYukawa , (1.1)
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CHAPTER 1. INTRODUCTION

Table 1.1: Representation of Fields in SM

Symbols SU(3)C SU(2)L U(1)Y

Quarks qi =

(
uLi

dLi

)
3 2 1

6

uRi 3 1 2
3

dRi 3 1 −1
3

Leptons li =

(
νLi

eLi

)
1 2 −1

2

eRi 1 1 −1

Higgs H 1 2 1
2

with

Lmatter = ∑
ψ=q′,u′R,d′R,l′,e′R

iψi D̸ψi ,

Lgauge = −
1
4

GA
µνGA µν − 1

4
Wa

µνWa µν − 1
4

BµνBµν ,

LHiggs = (DµH)†DµH −V(H)

LYukawa = (Yu)iju′RiHq′j − (Yd)ijd
′
RiH

Cq′j − (Ye)ije′RiH
Cl′j + h.c. .

(1.2)

Here, Dµ is a covariant derivative and ̸D = γµDµ with a γ-matrix γµ. The field strength is
defined by Fa

µν ≡ ∂µ Aa
ν− ∂ν Aa

µ− g f a
bc Ab

µ Ac
ν with a gauge field Aa

µ, a gauge coupling constant
g, and a gauge structure constant f a

bc. GA
µν, Wa

µν, and Bµν are respectively the field strength
tensors for SU(3)C, SU(2)L, and U(1)Y. The field content for the other fields is given by
Table 1.1. The prime for matter fermions represents gauge eigenstates and the subscripts
of matter fields i, j = 1, 2, 3 denote generations. The conjugated Higgs field in Eq. (1.2) is
defined as HC = iσ2H∗.

Below the Fermi scale, the electroweak (EW) symmetry (SU(2)L×U(1)Y) breaks into the
electromagnetic (EM) symmetry U(1)EM and weak gauge bosons get non-zero masses. In
fact, in the SM, the electroweak symmetry breaking (EWSB) is triggered by the tachyonic
Higgs and the Higgs potential is given by

V(H) = −µ2H†H +
λ

2
(H†H)2 . (1.3)

with positive µ2. At the minimum of this potential, the Higgs field H obtains the non-zero
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1.2. STANDARD MODEL

vacuum expectation value (VEV). The Higgs field is expanded around its VEV as follows.

H =

(
iξ+

1√
2
(v + h + ξ0)

)
, v =

√
2µ2

λ
. (1.4)

The observed value for the Higgs VEV v = 246.22 GeV [57]. ξ0,+ is absorbed by the weak
gauge bosons as the Nambu-Goldstone boson. The physical degree of freedom is the neutral
scalar field h with a mass of mh =

√
λv = 125.09 GeV [26].

After the EWSB, the electroweak gauge bosons get their masses (and W± and Z denote
their mass eigenstates). The masses of the EW gauge bosons are given by

mW ≡
1
2

gv = 80.385± 0.015 GeV ,

mZ ≡
1
2

√
g2 + g2

Yv = 91.1876± 0.0021 GeV ,
(1.5)

with gauge couplings g and gY for SU(2)L and U(1)Y, respectively (the observed values for
these gauge bosons are given in [57]). The EM coupling e relates to g and gY as

e ≡ ggY√
g2 + g2

Y

. (1.6)

The gauge bosons corresponding to the Cartan generators of SU(2)L×U(1)Y mix with each
other, and their mass eigenstates are different from the gauge eigenstates. The gauge and
mass eigenstates are mutually associated together via the weak mixing angle θW defined by

sin2 θW ≡
g2

Y
g2 + g2

Y
. (1.7)

We use the observed values for the EM coupling and the weak angle as the input values of
numerical calculation. The detail for input values is given in Appendix B.

Fermion masses and flavor violating interactions arise from the Yukawa interactions.
When the Higgs boson obtains the VEV, Yukawa terms become the Dirac mass terms for
quarks and leptons after redefining the flavor basis in order to diagonalize the Yukawa ma-
trices.

Lmass =
v√
2
(Yu)iju′Riu

′
Lj +

v√
2
(Yd)ijd

′
Rid
′
Lj +

v√
2
(Ye)ije′Rie

′
Lj

=∑
i

(
mui uRiuLi + mdi dRidLi + mei eRieLi

)
.

(1.8)
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CHAPTER 1. INTRODUCTION

In general, the complex matrix M is diagonalized by bi-unitary transformation Mdiag. =

U†MV with unitary matrices V and U. The gauge and flavor (mass) bases for fermions
relate with each other as follows.

u′L = VuuL , d′L = VddL , e′L = VeeL ,

u′R = UuuR , d′R = UddR , e′R = UeeR .
(1.9)

We diagonalize the mass matrices for Yu and Ye simultaneously by the redefinition of fields
for up-type quarks and leptons, but cannot take the down-type quarks diagonalized. We
parameterize the unitary transformation of the left-handed down-type quarks as d′L

s′L
b′L


weak

= UCKM

 dL
sL
bL


mass

, (1.10)

where UCKM is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [58,59]. We also show
the numerical entries for the CKM matrix in Appendix B. Since the gauge basis for quarks
is different from the flavor basis, the flavor-changing interactions are given by the CKM
matrix in the SM. Furthermore, three generations are assumed in the SM, and thus there is a
complex phase in the CKM matrix and the phase gives rise to the CP-violation.

Problems in Standard Model

Though the SM explains various particle phenomena well, the SM is expected to be extended
for the following reasons.

• No candidate of dark matter

• Origin of neutrino masses

• Baryon asymmetry of the Universe

• Why hypercharge is quantized

• and so on.

Our universe comprises three components: the baryonic matters (∼ 4.9%), the cold dark
matter (DM) (∼ 26.5%), and the dark energy (∼ 68.3%) [24]. The SM does not explain these
components except the baryonic one. In particular, the DM closely connects with models
beyond the SM if it behaves as a particle. Indeed, the mass scale of the DM is close to the
electroweak scale if the DM is initially in the thermal equilibrium by interacting with the SM
particles and explains the correct density.

While many neutrino oscillation experiments have shown that neutrinos have the non-
zero masses, there is no gauge invariant mass term for neutrinos in the SM. This fact requires
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1.2. STANDARD MODEL

new particles in order to give neutrino masses. The familiar one is the see-saw mechanism
[60, 61], which requires the SM singlet fermions called right-handed neutrinos.

Moreover, we do not explain the baryon-antibaryon asymmetry of the universe in the
SM. The SM does not satisfy the condition, which is known as Sakharov’s condition [25],
since the CP-violation in the SM is small and there is no departure from the thermal equilib-
rium.

Also, there is no reason for the U(1)Y charge being quantized though arbitrary real num-
bers are allowed for Abelian charges. If not, the hydrogen which consists of a electron and a
proton (= three quarks) is not electrically neutral. However the experimental upper bound
for the electric charge of a hydrogen is |Qe + Qp| < 1× 10−21 e [57].

Not just the experimental (or observational) sides, but there are some mysterious features
in the SM; the hierarchy problems in the Higgs mass [62] and the cosmological constant
[63], the origin of the mass hierarchy of fermions, the origin of the gauge group and matter
contents, and so on.

The gauge hierarchy problem is the naturalness problem in the Higgs mass parameter.
A correction to the squared mass of a scalar field is proportional to the UV cutoff scale since
the bare parameter for the scalar field is not protected by any symmetry. The physical mass
of the scalar field is obtained by the cancellation between the bara mass and the quadratic
divergence. In the case of the SM, the observed Higgs mass is

m2
h,Bare + ∆m2

h = m2
h = (125.09 GeV)2 , (1.11)

with

∆m2
h = − 3y2

t
4π2 Λ2 + · · · . (1.12)

Here, we consider only a dominant correction. Λ is the UV cutoff scale in which new physics
appears. It is certain that new physics appears at Λ = MPl = 2.4× 1018 GeV where quantum
gravity effects are not ignored. If the cutoff scale lies around 1018 GeV, large cancellation
between m2

h,Bare and ∆m2
h is required in order to explain the observed mass of the Higgs

boson.
Several solutions to the gauge hierarchy problem have been proposed. The extended

models proposed as the solution often require new particles whose masses lie around 102 ∼
103 GeV. ∗ In particular, the partner particle which has SU(3)C charge ensures the cancella-
tion: e.g. top-partner scalar in the supersymmetric models (such as the minimal supersym-
metric standard model: MSSM) and top-partner fermion in the pseudo-Nambu-Goldstone
boson (PNGB) Higgs models (such as the Little Higgs model [69–72]). †

Anyway, we give brief introduction of the MSSM and its extensions based on the discov-
ered Higgs boson in the next section.

∗Recently, the models which do not necessarily require new particles with a mass of a few TeV have been
proposed: Cosmological relaxation [64, 65], Nnaturalness [66], and Clockwork models [67, 68].

†The LHC experiments run1-2 have severely constrained the masses of SU(3)C charged particles. After
the Higgs discovery, new ideas have been proposed, which do not necessarily require the SU(3)C-charged
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CHAPTER 1. INTRODUCTION

1.3 Minimal Supersymmetric Standard Model

Supersymmetry (SUSY) is one of the promising extensions of the SM. In the supersymmetric
theories, we extend the space-time coordinates xµ into the ones with the Grassmann coordi-
nates (θα, θ†α̇), which is called “superspace”. Lagrangian on the superspace is constructed of
the constrained superfields S(xµ, θα, θ†α̇): chiral (anti-chiral) superfields Φ (Φ†) and vector
superfields V.

The chiral (anti-chiral) superfield is constrained as

Dα̇Φ = 0 , (DαΦ† = 0) , (1.13)

with the superspace covariant derivativeD (D). The chiral (anti-chiral) covariant derivative
defined as:

Dα ≡
∂

∂θα
− i(σµθ†)α∂µ , Dα ≡ ∂

∂θα
+ i(θ†σµ)α∂µ,

Dα̇ ≡ ∂

∂θ†
α̇

− i(σµθ)α̇∂µ , Dα̇ ≡
∂

∂θ†α̇
+ i(θσµ)α̇∂µ .

(1.14)

Here, σµ and σµ are covariant Pauli matrices. The chiral superfield contains a complex scalar
ϕ(x), a two-component Weyl spinor ψ(x), and an auxiliary field F(x) as component fields.
In particular, the chiral superfield is expanded as

Φ(x, θ, θ†) =ϕ(x)− iθ†σ̄µθ∂µϕ(x)− 1
4

θ2θ†2∂µ∂µϕ(x)

+ θψ(x) +
i√
2

θ2θ†σ̄µ∂µψ(x) + θ2F(x) .
(1.15)

In the supersymmetric extension of the SM, the SM quarks, leptons, and Higgs field are em-
bedded in chiral superfields. In supersymmetric Yang-Mills (SYM) theories, the supergauge
transformation for chiral superfield (Φa) with a gauge index a is given as follows;

Φa → Φ′a = (eiΛΦ)a , Φ†
a → Φ′†a = (Φ†e−iΛ†

)a , (1.16)

where Λ = ΛATA is a gauge parameter with a generator TA and is a chiral superfield.
A vector superfield V, which includes a gauge field, satisfies the real condition V = V†.

There remain unphysical components in V only by imposing the above condition. In fact,
since the gauge field Aµ(x) is a component field of V, we remove the unphysical degrees

particles in order to cancel the quadratic divergence. The ideas are called “Neutral naturalness”. New particles
are charged under a different SU(3) and the cancellation is ensured by discrete Z2 symmetry. For instance,
the fermionic top-partner models called “Twin Higgs” [73–76], the bosonic top-partner models called “Folded
SUSY” [77, 78].
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1.3. MINIMAL SUPERSYMMETRIC STANDARD MODEL

of freedom by the supergauge transformation. The supergauge transformation of the vector
superfield V is given by

eV → eV′ = eiΛ†
eVe−iΛ , (1.17)

under the transformation for (anti-chiral) chiral superfields in Eq. (1.16). The vector super-
field including only physical fields is expanded as

VWZ(x, θ, θ) = θ†σµθAµ(x) + θ†2θλ(x) + θ2θ†λ†(x) +
1
2

θ2θ†2D(x) . (1.18)

Here, we fix the supergauge to be the Wess-Zumino gauge, in which there remains an or-
dinary gauge degrees of freedom. λ(x) and D(x) are respectively a two-component Weyl
spinor and an auxiliary field associated with the gauge multiplet. For a non-Abelian vector
superfield, the following chiral superfield is covariant under the supergauge transformation.

Wα = −1
4
D2

(e−VDαeV) , (1.19)

with V = 2gVATA, a gauge coupling g, and a generator TA.
The gauge invariant Lagrangian in terms of superfields is given by

L =
∫

d4θ K(Φ̃, Φ) +

[∫
d2θ W(Φ) + h.c.

]
+

[∫
d2θ

1
4

fab(Φ)W aαW b
α + h.c.

]
. (1.20)

Here, we define the superfield with tilde as Φ̃ ≡ Φ†eV . K(Φ̃, Φ) and W(Φ) are referred to
as Kähler potential and superpotential, respectively. The superpotential W(Φ) is a holomor-
phic function of chiral superfields. f (Φ) is also a holomorphic function of chiral superfields
called “gauge kinetic function”. In a renormalizable theory, the forms of these functions are
determined as follows:

K(Φ̃, Φ) = Φ̃iΦi ,

W(Φ) =
1
2

MijΦiΦj +
1
3!

yijkΦiΦjΦk ,

fab(Φ) =
1

4g2 δab ,

(1.21)

where i, j, . . . are labels of chiral (anti-chiral) superfields.

MSSM

The supersymmetric extension of the standard model [79–82] is the promising model be-
yond the standard model (BSM). Now, we briefly explain the minimal supersymmetric stan-
dard model (MSSM). Superfields in the MSSM are given in Table 1.2. Superpotential defined

10



CHAPTER 1. INTRODUCTION

Table 1.2: Superfields in MSSM
spin-0 spin-1/2 spin-1 SU(3)C SU(2)L U(1)Y Z2R

Q q̃ q - 3 2 1/6 −1

L l̃ l - 1 2 −1/2 −1

U ũ u - 3 1 −2/3 −1

D d̃ d - 3 1 1/3 −1

E ẽ e - 1 1 1 −1

Hu Hu hu - 1 2 1/2 1

Hd Hd hd - 1 2 −1/2 1

G - g̃ Gµ 8 1 0 1

W - W̃ Wµ 1 3 0 1

B - B̃ Bµ 1 1 0 1

as a holomorphic function of chiral superfields, and thus, two Higgs doublets are required
to be introduced in supersymmetric theories. One of two couples to up-type quark super-
fields, and another couples to down-type and electron-type superfields. The superpotential
corresponding to the Yukawa interaction is

WYukawa = (YU)ijHuUiQLj − (YD)ijHdDiQLj − (YE)ijHdEiLLj , (1.22)

where i, j, . . . denote generations. In this notation, the indices of SU(3)C and SU(2)L are
not written down explicitly. In particular the indices of SU(2)L are contracted by the totally
anti-symmetric tensor.

We also assume a Z2-parity called “R-parity” invariance which assigns SM particles and
these superpartners to parity-even and parity-odd, respectively. The definition of the R-
parity is

PR = (−1)3(B−L)+2s , (1.23)

with the baryon number B, the lepton number L, and spin of component fields s. In order to
be consistent with the above definition, we assign the Z2-parity for the MSSM chiral super-
fields as Table 1.2. This parity ensures the stability of the lightest supersymmetric particle
(LSP), and the LSP is a dark mater candidate. Furthermore, the baryon number violating
and the lepton number violating operators as

W∆L=1 =
1
2

λijkLiLjEk + λ′ijkLiQjDk + µiLiHu ,

W∆B=1 = λ
ijk
B UiDjDk ,

(1.24)

11



1.3. MINIMAL SUPERSYMMETRIC STANDARD MODEL

are forbidden by this parity. Although such operators generate the most terrible nucleon
decay interactions induced by exchanging sfermions at tree level, they are prohibited by the
R-parity.

From the gauge invariance, only the following supersymmetric mass term for the Higgs
superfields is allowed.

Wmass = µHuHd . (1.25)

The full superpotential for the MSSM is constructed as the summation of above two super-
potentials.

WMSSM = Wmass + WYukawa . (1.26)

This superpotential generates a lot of new interactions in addition to the Yukawa interac-
tions in the SM Lagrangian.

So far any sparticles have not been discovered at the collider experiments, and hence the
SUSY should be broken at least at the EW scale. In order not to spoil advantages in the SUSY
SM, SUSY should be broken softly, which the breaking terms are called “soft supersymmetry
breaking terms”. The soft SUSY breaking Lagrangian is given by

−Lsoft =
1
2

M3 g̃g̃ +
1
2

M2W̃W̃ +
1
2

M1B̃B̃ + c.c.

+ (Au)ijũiq̃jHu − (Ad)ijd̃iq̃jHd − (Ae)ij ẽi l̃jHd + c.c.

+ ∑
ϕ=q̃,l̃,ũ,d̃,̃e

(m2
ϕ)ijϕ

†
i ϕj + m2

Hu
H†

u Hu + m2
Hd

H†
d Hd + (bHuHd + c.c.) .

(1.27)

Here, the gaugino masses M1,2,3, the scalar-trilinear coupling matrices Au,d,e, the holomor-
phic Higgs soft mass b, the non-holomorphic soft masses for Higgs doublets m2

Hu
and m2

Hd
,

and the non-holomorphic soft masses for sfermions m2
ϕ (ϕ = q̃, l̃, ũ, d̃, ẽ).

In this minimal extension of the standard model, the scalar potential of the Higgs bosons
arises from supersymmetric interactions and soft breaking terms as the following form:

V =(|µ|2 + m2
Hu
)|H0

u|2 + (|µ|2 + m2
Hd
)|H0

d |
2

− [bH0
uH0

d + h.c.] +
1
8
(g2 + g2

Y)(|H0
u|2 − |H0

d |
2)2 ,

(1.28)

where m2
Hd

, m2
Hu

, and b are the soft supersymmetry breaking parameters. There are two
neutral Higgs components, H0

u and H0
d . We have two mass eigenstate h0 and H0 by taking

the linear combination of these scalar fields as

H0
u =

1√
2

vu +
1√
2

h0 sin β +
1√
2

H0 cos β + . . . ,

H0
d =

1√
2

vd +
1√
2

h0 cos β +
1√
2

H0 sin β + . . . .
(1.29)

12
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The lightest Higgs boson h0 is identified with the SM Higgs boson. vu and vd are respectively
the VEVs for H0

u and H0
d , and the VEV of the SM Higgs boson is given by v2 = v2

u + v2
d. The

ratio of the VEVs is given by tan β = vu/vd. At the tree-level, the quartic coupling of the SM
Higgs in scalar potential is connected with the gauge coupling

λ =
1
4
(g2 + g2

Y) cos2 2β . (1.30)

The mass of the SM Higgs boson is given by

m2
h0 =

1
2

(
m2

A0 + m2
Z −

√
(m2

A0 −m2
Z)

2 + 4m2
Zm2

A0 sin2 2β

)
, (1.31)

with the CP-odd Higgs mass m2
A0 = 2b/ sin 2β. This tells us that the Higgs mass is bounded

from above as

mh0 < mZ| cos 2β| . (1.32)

The mass of the observed Higgs boson is measured as 125.09 GeV at the LHC experiments
[26], which is larger than the mass of Z-boson. However, it is possible to raise the upper
bound by including radiative corrections [83, 84].

In order to realize the observed mass of the SM Higgs boson, we need to include ad-
ditional contributions. One is to extend the MSSM such as the Next-MSSM [29], in which
there is an additional contribution to the scalar potential from an additional singlet super-
field. The others are the models with large quantum corrections: high-scale or split SUSY
scenarios [85, 86], the additional vector-like matter scenarios [27, 28], or specific mass spec-
trum scenarios [29].

Extended Models and Gauge Coupling Unification

We discuss the extended models introducing additional quantum corrections in the last of
this section. The gauge coupling unification works well in the MSSM with TeV-scale SUSY
[87]. Fig. 1.1 compares the gauge coupling running in the SM (Black broken lines) and in
the MSSM (Blue solid lines) with two-loop RGEs and one-loop threshold corrections. Here,
we define α = g2/4π with gauge coupling g. For blue lines, the SUSY breaking scale is
set to be 1 TeV, the gaugino masses are set to be M2 = 300 GeV and M3 = 1 TeV, and the
ratio of the Higgs VEVs is tan β = 3. We see that the coupling unification is achieved in the
MSSM and the unification scale lies around 1016 GeV. Since it is found that the coupling
unification is not complete even in the MSSM, the mismatch of the couplings is interpreted
as the threshold corrections at the GUT scale. In other words, the GUT scale mass spectrum
contributes to splitting the gauge couplings

Anyway, we give a brief introduction of the extensions and show the unification works
well even in the extended SUSY SM.
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Figure 1.1: Gauge coupling unification in SM (Black broken lines), in TeV-scale MSSM (Blue
solid lines), and in Split SUSY (Red solid lines).

Split SUSY Model

To begin with, we consider the split SUSY models [30,88]. If there is no singlet superfield in
the SUSY breaking sector, gauginos do not obtain tree-level masses. We consider the SUSY
breaking spurion field X carries hidden charge. The SUSY breaking arises from the F-term
VEV of X given as

⟨X⟩ = FXθ2 . (1.33)

Sfermion masses arise from the following higher-dimensional operator,

∫
d4θ

XX†

Λ2 Φ†Φ , (1.34)

where Λ denotes the SUSY breaking mediation scale. For instance, Λ ∼ MPl if the SUSY
is broken by the (quantum or super-) gravity effect or Λ is comparable to the mass scale
of messenger fields if the SUSY is dynamically broken in the hidden sector. Anyway, the
sfermion masses are generated as m2

ϕ ∼ F2
X/Λ2. The gaugino masses and the scalar trilinear

14
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couplings (A-terms) are not generated because of the hidden charge conservation. In other
words, the following operators are forbidden by hidden symmetry.∫

d2θ
X
Λ
W aW b ,

∫
d2θ

X
Λ

λijkΦiΦjΦk . (1.35)

In this case, they are generated by anomaly mediated supersymmetry breaking (AMSB)
[89, 90]. The gaugino masses and A-terms are generated with one-loop suppression

Ma(µ) = −
β(g2

a)

2g2
a

m3/2 , Aijk(µ) = −
1
2
(γi + γj + γk)m3/2λijk(µ) . (1.36)

Here, β is the beta function for a gauge coupling and γi is the anomalous dimension for
the chiral superfield Φi. m3/2 represents the mass of gravitino. Gauginos with a mass of
a few TeV are compatible with the thermal DM scenario. The heavy sfermion and grav-
itino scenarios solve several problems: SUSY flavor and/or CP problems [91], cosmological
problems (such as the Polonyi problem [92] and gravitino problem [93]).

Even in this scenario, the gauge coupling unification works well. Red lines in Fig. 1.1
show the gauge coupling running in the split SUSY model. We assume the mass spectrum
of sparticles as follows. The sfermions are degenerate in mass (MS = 102 TeV), the mass of
wino is set to be M2 = 3 TeV, and the ratio of the masses of wino and gluino M3/M2 = 9.

Vector-like Extensions of MSSM

Next, we introduce extra matters to the MSSM. If the extra matters are introduced in vector-
like representations of the SM group, the model is anomaly-free. The low-scale gauge me-
diated supersymmetry breaking (GMSB) model requires to introduce extra vector-like su-
permultiplets [94]. Moreover, the extra matters in irreducible representations of the unified
gauge group (such as SU(5)) ensure the coupling unification.

For a 5 + 5 extension, we introduce the following superfields.

D′(3, 1)−1/3 , D′(3, 1)1/3 ,

L′(1, 2)−1/2 , L′(1, 2)1/2 .
(1.37)

Here, (rC, rW)Y represents SU(3)C rC-plet, SU(2)L rW-plet with hypercharge Y under the SM
group. In a 10 + 10 extended model, additional superfields,

U′(3, 1)2/3 , U′(3, 1)−2/3 ,

Q′(3, 2)−1/6 , Q′(3, 2)1/6 ,

E′(1, 1)1 , E′(1, 1)−1 ,

(1.38)
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Figure 1.2: Gauge coupling running in MSSM with extra vector-like multiplets.

are introduced.
Vector-like scenarios have fruitful phenomenological consequences. For instance, if the

mass scale of extra matters lies around several hundred GeV, they explain the 3σ discrepancy
of muon anomalous magnetic moment between measured value [95] and the SM prediction
(see Ref. [96]) within the SUSY SM [97, 98].

Fig. 1.2 shows the gauge coupling running in the vector-like extensions. N5 in this figure
denotes the number of 5 + 5 pairs. We assume that all sparticles and extra multiplets are
degenerate in mass, and their mass scale is set to be 1 TeV. From this figure, we understand
that the gauge couplings converge at the high-energy in the presence of several extra vector-
like multiplets. Furthermore, the unified coupling becomes larger as we increase the number
of extra matters. As we will see in Chapter 2, it implies that the proton decay rate via an extra
gauge boson mediation will be enhanced [99].

Even if the mass scale of extra multiplet is higher, there are some interesting features.
Considering that the mixture of the split SUSY and extra vector-like multiplet, LSP in this
model is often bino [100]. In order to explain the correct relic density, bino should be nearly
degenerate with other gauginos in mass. In this framework, the additional CP-violation
could be also generated in gaugino mass parameters since gaugino masses arise from both
of AMSB and GMSB contributions. This fact affects the predictions of nucleon and electron
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electric dipole moments (EDMs) [101], and hence the future EDM experiments have the
potential to discriminate the simplest split-SUSY model and its extension.

In the present day, the mass of gluino is severely constrained by the LHC experiments.
The lower bound for gluino mass is 1.9 TeV in a simplified mass spectrum [102]. Heavy
gauginos and RGE considerations naïvely result in heavy colored scalars, and thus new
particles may not be seen at the LHC experiments. However, if the soft parameters for
the extra matters are much larger than those for the MSSM sparticles, the light stop with
the mass below 1 TeV, the heavy gluino, and the observed Higgs boson are simultaneously
explained in the context of gaugino mediation scenario [103].
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Chapter 2

Grand Unification and Proton Decay

Grand unified theories (GUTs) explain several problems in the SM. For instance, there is no
reason that the gauge anomalies for the SM gauge group are completely cancelled. More-
over, the U(1)Y charges for matter fermions are quantized in the SM, otherwise the hydrogen
atom which is a bound state of electron and proton can be charged. These facts imply that
the SM gauge group is a subgroup of the larger gauge (simple) group. Indeed, three gauge
couplings at the weak scale unify at around 1016 GeV if the low scale supersymmetry is
assumed [87].∗

The framework of the grand unification gives explanations for neutrino masses and the
baryon asymmetry of the Universe. The familiar scenario is the (type-I) see-saw mechanism
and the standard Leptogenesis scenario. Furthermore, in the case that the unified gauge
group is simple, quantization of hypercharges is explained since the hypercharge U(1) is a
subgroup of the unified group.

SU(5), SO(10), and E6 are the candidates of the unified gauge group. The original non-
SUSY SU(5) GUT was investigated by H. Georgi and S. L. Glashow [32]. An SU(5) is the
rank-four group, which the SM gauge group is also the same rank group, and contains the
complex representations. Supersymmetrization of this minimal SU(5) GUT was proposed
after that [105, 106].

New colored fields such as new gauge bosons and color-triplet Higgs multiplets are in-
cluded at the unification scale. These fields might give rise to the baryon-number violating
processes (such as nucleon decay). In general, nucleon decay is one of the prediction of the
SUSY GUTs, and hence the SUSY GUT models can be tested by the nucleon decay searches.

∗The coupling unification can be ameliorated even in the split SUSY scenarios [104]. The multi-TeV gaugi-
nos play an important role of the gauge coupling unification.
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2.1 Supersymmetric Grand Unification Models

In this section, we review the SUSY SU(5) GUT models, especially the minimal SUSY SU(5)
GUT and the missing partner SU(5) model.

Minimal SU(5)

Now, let us consider the minimal embedding of the MSSM into the SU(5) GUT model. All
the MSSM chiral superfields listed in Table 1.2 are embedded into the chiral superfields in
the SU(5) representation. In particular, 5 + 10 which are respectively denoted by Φ and Ψ
contain all MSSM matter superfields:

ΦA(5) =
(

Dα

ϵrsLs

)
, ΨAB(10) =

1√
2

(
ϵαβγUγ Qαs

−Qβr ϵrsE

)
, (2.1)

where A, B, · · · = 1, 2, · · · 5 denote SU(5) indices, and α, β, · · · = 1, 2, 3 and r, s, · · · = 1, 2 are
SU(3)C and SU(2)L indices, respectively.

The MSSM Higgs doublets Hu、Hd are embedded in the 5 + 5 representation,

H(5) =
(

Hα
C

Hr
u

)
, H(5) =

(
HCα

ϵrsHs
d

)
, (2.2)

with two color-triplet Higgs superfields HC, HC. Furthermore, we need to introduce the
Higgs superfield breaking SU(5) to the SM gauge group. The Higgs field with the GUT
breaking VEV should be the singlet under the SM gauge group. Among the non-trivial
SU(5) representations, it is known that 24, 75, 200, · · · contain the SM singlet fields. Thus,
we use the adjoint (24) representation chiral superfield Σ(24) as the GUT-breaking one in
the minimal SU(5). The SM decomposition of Σ(24) is given by

ΣA
B(24) =

(
Σ8 Σ(3,2)

Σ(3∗,2) Σ3

)
+

1√
2

1√
30

(
2 0
0 −3

)
Σ24 . (2.3)

The GUT-breaking VEV is parametrize as

⟨Σ⟩ = v24


2

2
2
−3

−3

 . (2.4)

The generator corresponding to the U(1) sub-algebra is normalized as tr(TU(1)TU(1)) =

1/2 while the U(1)Y charges have already been given in Table 1.2 and the corresponding
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generator TY differs from the unified U(1). The relation between the U(1) generators is
given by

TU(1) =

√
3
5

TY . (2.5)

Since the normalization of the gauge boson is determined the kinetic term, the coupling and
generator in each normalization satisfy g1TU(1) = gYTY. Thus, the unified U(1) coupling g1
relates to the hypercharge coupling as follows.

g1 =

√
5
3

gY . (2.6)

The SU(5) vector superfield contains the MSSM vector superfields and additional vector
superfields. The MSSM decomposition of the SU(5) vector superfield V5 is given as

V5 =

 Gα
β −

2
2
√

15
Bδα

β
1√
2

X†α
r

1√
2

Xs
β Ws

r +
3

2
√

15
Bδs

r

 , (2.7)

where Gα
β, Ws

r, and B are the MSSM vector superfields for SU(3)C, SU(2)L, and U(1)Y,
respectively. X and X† are extra vector superfields which obtain the non-zero mass after the
GUT breaking.

In the minimal SUSY SU(5) GUT, the Kähler potential and the superpotential in the
flavor basis of matter superfields are written as

K = Φ†A
i (e−2g5V5)B

AΦiB + Ψ†
iAB(e

2g5V5)A
C(e

2g5V5)B
DΨCD

i

+ 2Σ†A
B(e−2g5V5)C

A(e
2g5V5)B

DΣD
C + H†A

5 (e−2g5V5)B
AH5B

+ H†
5A(e

2g5V5)A
BHB

5 .

(2.8)

X and X† acquire a heavy mass through the interactions to Σ in the Kähler potential, and
their masses are denoted by MX = 5

√
2g5v24.

Next, we consider the superpotential in the minimal SU(5). We assume the renormal-
izability and the R-parity for superfields, and then we have the following gauge invariant
superpotential.

W =
f
3

trΣ3 +
m24

2
trΣ2 + λHA(ΣA

B + 3v24δA
B)HB

+
hij

4
ϵABCDEΨAB

i ΨCD
j HE +

√
2 f ijΨAB

i ΦjAHB ,
(2.9)
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where i, j = 1, 2, 3 represent flavor indices. hij and f ij is complex 3 × 3 matrices: hij is a
symmetric matrix while f ij is an unconstrained matrix. Using flavor rotation for Φ and Ψ,
U(3)×U(3) rotation, we make hij diagonalize as follows.

hij = (yi
ueiφi) δij ,

f ij = (U∗CKM)ij yj
d .

(2.10)

Here, yu and yd are diagonalized Yukawa matrices, and UCKM is the CKM matrix. Since
there remain two additional phase parameters, the phases φi (i = 1, 2, 3) are constrained as
φ1 + φ2 + φ3 = 0. By the degrees of freedom of field re-parametrization, the mass eigenstates
for components of Ψi are given by

Qi =

(
Ui
Di

)
→
(

Ui
(UCKM)ijDj

)
, Ui → e−iφiUi , Ei → (UCKM)ijEj . (2.11)

For component superfields of Φi, the mass eigenstates are identified as the gauge eigen-
states.

We impose the supersymmetric condition after the GUT-breaking as follows.

∂W
∂Σ

∣∣∣∣
Σ=⟨Σ⟩

= 30(− f v2
24 + m24v24) = 0 , (2.12)

and then, we have v24 = m24/ f .
After the adjoint Higgs superfield obtains the VEV, the interaction term among H, H, and

the adjoint Higgs Σ is

Wh-Σ =λHA(ΣA
B + 3v24δA

B)HB

−→λHA


5v24

5v24
5v24

0
0

HB .
(2.13)

Since v24 is on the order of the GUT scale (∼ 1016 GeV), we tune the gauge invariant mass
term for H and H. In fact, the supersymmetric mass for the color-triplet Higgs is given by
MHC = 5λv24, on the other hand that for the MSSM Higgs doublets is zero. This fine-tuning
problem for the GUT parameters is known as the doublet-triplet splitting problem.

The masses of the adjoint Higgs multiplet are also split after the SU(5) breaking. The
weak triplet Σ3 and the color octet Σ8 have a common mass denoted by MΣ = 5

2 f v24, and
the SM singlet Σ24 has MΣ24 = MΣ/5. The off-diagonal chiral superfields Σ(3,2) and Σ(3∗,2)

are absorbed by the massive vector superfields X and X†.
In the minimal SU(5) GUT, there are the following two problems.
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• Doublet-triplet splitting problem

• GUT relation for fermion masses

The first one, the doublet-triplet splitting problem, is the above-mentioned fine tuning prob-
lem among the superpotential mass parameters. In the minimal GUT model, the MSSM
Yukawa matrices at the GUT scale is imposed the relation YD = (YE)

T since the doublet
leptons and the down-type quarks are included in the same superfield, Φ(5). It is, however,
known that the Yukawa couplings at the GUT scale which are evolved by the renormaliza-
tion group equations (RGEs) do not satisfy the GUT relation for YD and YE . In order for
solving the GUT relations for fermion masses, the following ways are considered.

• Higher-dimensional (Planck scale suppressed) operators

• Higher-dimensional representation fields

• Additional vector-like matters and their mixing with the MSSM fields

In particular, since a tensor product 10× 5 is decomposed into a sum 45 + 5, the product
ΨAB

i ΦjC can couple to the 45-Higgs HC
AB as follows

yijΨAB
i ΦjC HC

AB . (2.14)

This new interaction can solve the bottom-tau unification problem. However, in order to
avoid many remnants at the low scale, 45 should be introduced with vector-like pair super-
field since it contains huge component fields.

Missing Partner SU(5)

Next, we briefly review the model which solves the doublet-triplet splitting problem and is
called “Missing-partner Model”. This model is proposed by Grinstein [107] and Masiero-
Nanopoulos-Tamvakis-Yanagida [108]. Here, we show the missing partner model with
Peccei-Quinn (PQ) symmetry [109], which is proposed by Ref. [110].

The particle contents of this model is given in Table 2.1. Ψi and Φi are the matter su-
perfields in the minimal SUSY SU(5) with the generation index i = 1, 2, 3. Ni denotes the
superfields including the right-handed neutrino. H (H) is the (anti-)fundamental Higgs su-
perfield in the minimal SUSY SU(5). The additional fields are Θ(50), Θ(50), and Ξ(75). In
fact, the next minimal representation including a field with the same quantum number as
the color-triplets in 5+ 5 is 50+ 50. 50+ 50 has no weak doublet, and thus the MSSM Higgs
doublets are still massless after the GUT breaking. Since a product of 50 and 5 is decom-
posed as 50⊗ 5 = 75⊕ 175′, the additional field Ξ(75) is needed for the gauge invariant
superpotential. In this model, the breaking of the SU(5) GUT is induced by the VEV of
Ξ(75). We also introduce singlet fields P and Q in order to break the U(1) PQ symmetry.
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Table 2.1: Peccei-Quinn Charges in Missing Partner Model

Ψi Φi Ni H H H′ H′

dim. 10 5 1 5 5 5 5

U(1)PQ
α

2
β

2
2α− β

2
−α −α + β

2
α + β

2
α

Θ Θ Θ′ Θ
′

Ξ P Q

dim. 50 50 50 50 75 1 1

U(1)PQ α
α + β

2
−α + β

2
−α 0 −3α + β

2
3(3α + β)

2

The U(1)PQ charge assignment is also given in Table 2.1. Here, we assume that the PQ
symmetry remains after the GUT breaking, that is, Ξ(75) is U(1)PQ neutral. Moreover,
we also assume 3α + β ̸= 0. This assumption prohibits the dangerous operators such as
ΦiΨjΨkΨl after the GUT breaking. Otherwise, the operators give rise to the dimension-five
proton decay, which is discussed in the next section.

The gauge invariant and PQ-invariant superpotential is given by

W =
1
4

hijϵABCDEΨ[AB]
i Ψ[CD]

j HE +
√

2 fijΨ
[AB]
i ΦjAHB

+ gHϵABCDEHAΞ[BC]
[FG]

Θ[DE][FG] + gHϵABCDEHAΞ[FG]
[BC]Θ[DE][FG]

+ g′HϵABCDEH′AΞ[BC]
[FG]

Θ′[DE][FG] + g′HϵABCDEH′AΞ[FG]
[BC]Θ

′
[DE][FG]

+ M1Θ[AB][CD]Θ
′[AB][CD] + M2Θ

′
[AB][CD]Θ

[AB][CD]

+ m75Ξ[CD]
[AB]Ξ

[AB]
[CD]
− 1

3
λ75Ξ[AB]

[EF] Ξ[CD]
[AB]Ξ

[EF]
[CD]

.

(2.15)

Here, [AB] represents an anti-symmetric pair of indices. ϵABCDE and ϵABCDE are totally anti-
symmetric tensor. We introduce two copies of 5+ 5 and 50+ 50 for the invariant mass terms
of 50s.

If there remain the additional fields, the gauge coupling will diverge between the GUT
and the Planck scale, and then the model do not have any perturbative picture. Therefore,
M1 = M2 = MPl = 2.4× 1018 GeV is assumed in double missing partner models. The VEV
of the 75-dimensional Higgs superfield is given as follows.⟨

Ξ(ab)
(cd)

⟩
=

3
2

v75(δ
a
c δb

d − δa
dδb

c ) ,
⟨

Ξ(αβ)
(γδ)

⟩
=

1
2

v75(δ
α
γδ

β
δ − δα

δ δ
β
γ) ,⟨

Ξ(αa)
(βb)

⟩
= −1

2
v75δα

βδa
b .

(2.16)
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Table 2.2: Mass splitting of 75 components

irreps. Mass

(1, 1)0
2
5

MΞ

(3, 1)− 5
3

, (3, 1) 5
3

4
5

MΞ

(3, 2) 5
6

, (3, 2)− 5
6

0 (NG modes)

(6, 2) 5
6

, (6, 2)− 5
6

2
5

MΞ

(8, 1)0
1
5

MΞ

(8, 3)0 MΞ = 5m75

Using the gauge invariant Kähler Potential normalized as

K = Ξ†(AB)
(CD)

(e2gV)C
G(e

2gV)D
H(e
−2gV)E

A(e
−2gV)F

BΞ(GH)
(EF) , (2.17)

the mass of X-boson is given by MX = 2
√

6gv75. From the saddle point condition for super-
potential, we obtain the following relation among the VEV v75 and Lagrangian parameters.

∂W75

∂v75
= 0 , ⇔ v75 =

3
2

m75

λ75
. (2.18)

There is mass splitting among the components of 75 after the symmetry breaking. The
masses are listed in Table 2.2. (3, 2) 5

6
and (3, 2)− 5

6
are absorbed as longitudinal modes of

the X-boson.
The mass terms for color triplets arise from integrating out 50s as

WColor = MHC HCH′C + MHC
H′C HC , (2.19)

with

MHC =
48gHg′Hv2

75

M2
, MHC

=
48g′HgHv2

75
M1

. (2.20)

In this model ,the typical mass scale of the color-triplets is around 1015 GeV. This is because
that we assume M1 and M2 are of the order of the Planck scale. On the other hand, there
remain four massless SU(2)L Higgs doublets, H f , H f , H′f , and H′f .
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At last of this subsection, we consider the breaking of the PQ symmetry. We use the
radiatively breaking of the the PQ symmetry [111]. P and Q play a role of U(1)PQ breaking
Higgs fields. The invariant superpotential for P and Q under the U(1)PQ symmetry is given
by

W ′′ =
fPl

MPl
P3Q + gPH′AH′AP . (2.21)

The scalar potential generated from W ′′ is

V(P, Q) =
f 2
Pl

M2

(
|P|6 + |3P2Q|2

)
. (2.22)

Since this potential is considerably flat, the PQ symmetry is easily broken via the soft SUSY
breaking term for P. Concretely speaking, if we add the negative soft mass term (∼ −m2)
for the P field, the potential minimum is shifted and then P and Q obtain the non-zero VEV
as

⟨P⟩ ∼ ⟨Q⟩ ∼
√

MPlm
fPl

. (2.23)

If we take f ∼ 1 and m ∼ 1 TeV, then ⟨P⟩ ∼ ⟨Q⟩ ∼ 1011 GeV. In addition, the PQ symmetry
breaking gives non-zero masses to the additional Higgs doublets

MH′f
= gP ⟨P⟩ ∼ 1011 GeV . (2.24)

The right-handed neutrinos Ni(1) play a role of removing an extra global U(1) symmetry.
In fact, the PQ charges are characterized α and β. The superpotential with the right-handed
neutrinos must be the following form

W ′′′ = kijNiΦjAHA + λNijNiNjP , (2.25)

in order that the see-saw mechanism works well. From the first term, we determine the PQ
charge for the right-handed neutrinos, and hence the second term is invariant under U(1)PQ
if and only if α = 3β.

2.2 Nucleon Decay in SUSY GUTs

As we mentioned at the beginning of this section, the nucleon decay is the promising signal
of the SUSY GUTs. In this thesis, since we impose the R-parity conservation, baryon-number
violating dimension-four operators are forbidden. The dominant decay modes in the SUSY
GUTs with the simple unified group are induced via the color-triplet mediation and the extra
gauge boson mediation.
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Dimension-five Operators

After we integrate out the color-triplet Higgs multiplets, we obtain the dimension-five op-
erators in the superpotential as follows.

W =− 1
MHC

(UCKM)∗kly
l
dyi

ueiφiUiEiQkLl

− yi
ueiφi

MHC

(
(UCKM)∗kly

l
dϵabcUiaEiUkbDlc +

1
2
(UCKM)∗kly

l
dϵabc(Qb

i Qc
i )(Q

a
kLl)

)
.

(2.26)

Here, we use the gauge basis for matter superfields in Eq. (2.26). The last two terms give rise
to the baryon-number violating processes. In the minimal SUSY SU(5) GUT, the rapid decay
mode (p → K+ + ν) is generated by these operators. This is because the flavor conserved
part is vanished due to the anti-symmetric tensor for color indices. If the SUSY spectra lie
around a several TeV, the partial lifetime is τ(p→ K++ ν) ≃ 1031 years [37,38]. On the other
hand, the current lower bound for this decay mode is τ(p → K+ + ν) ≳ 6.6× 1033 years
given by the Super-Kamiokande experiment [39]. Thus, the minimal SUSY SU(5) GUT with
the low-scale SUSY is excluded by the Super-Kamiokande experiment.

In order to evade from the experimental bound, some ideas have been proposed, which
suppress or prohibit the dimension-five operators. The following list shows the examples
which relax the proton decay constraints.

1. Global Symmetries

If the supersymmetric mass term for color-triplets is prohibited by global symmetries,
the dimension-five operators are not generated. Indeed, the p → K+ + ν decay mode
is suppressed in the SUSY SU(5) GUTs by imposing the Peccei-Quinn symmetry [110],
the anomalous U(1) symmetry [112], and so on.

2. Extradimensions

In five-dimensional N = 1 SUSY theories, the chiral superfields H and H are re-
spectively embedded in hypermultiplets (H, Hc) and (H, Hc

) in terms of the four-
dimensional N = 2 SUSY. The mass terms only for HHc and HHc are allowed by
orbifolding [113]. Furthermore, this rapid decay operators are prohibit by the con-
tinuum global symmetry (such as the remaining U(1) R-symmetry [114]) or discrete
symmetries [115, 116].

3. High-scale or Split SUSY

In the split SUSY scenarios, since amplitudes for this decay mode are proportional to
MHC MS with the mass of sfermions MS, this mode dominates proton lifetime and it is
detectable at the future experiment (Hyper-Kamiokande) [117–119].

As we have listed, the dimension-five decay mode strongly depends on the GUT models.
Moreover, the Planck scale physics may also affect to the prediction for this decay mode if
the SUSY breaking scale is lying around TeV (see Refs. [120, 121]).
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Dimension-six Operators

The dimension-six proton decay operators are generated via the extra gauge-boson exchange.
In the minimal setup of SUSY SU(5) GUTs, the X-boson interactions with the matter super-
fields are given by the following terms.

LX =
∫

d4θ
(
K(0)

V1
+K(0)

V2
+K(0)

V3

)
, (2.27)

with

K(0)
V1

= −
√

2g5ϵrsL†
siDαiX†α

r + h.c. ,

K(0)
V2

= −
√

2g5ϵαβγeiφiU†γ
i Qrβ

i X†α
r + h.c. ,

K(0)
V3

= −
√

2g5ϵsr(UCKM)ijQ†
sαiEjX†α

r + h.c. ,

(2.28)

and the baryon-number violating operators are effectively induced by integrating out the X
boson at the low energy. The effective dimension-six operators are written as follows at the
tree level; ∗

Ldim.6 =
∫

d4θ
(
K(0)

1 +K(0)
2

)
, (2.29)

with

K(0)
1 = −eiφi

g2
5

M2
X

ϵαβγϵrsU
†α
i D†β

j Qrγ
i Ls

j + h.c. ,

K(0)
2 = −eiφi(UCKM)∗kj

g2
5

M2
X

ϵαβγϵrsE†
j Uα†

i Qrβ
k Qsγ

i + h.c. .
(2.30)

The dominant decay mode by these operators is that proton decays into neutral pion and
positron. The Super-Kamiokande experiment has reported the current lower lifetime limit
on this mode is 1.6× 1034 years [40].

The effective Lagrangian for the dominant decay mode is

Lp =
g2

5

M2
X

eiϕ1ϵαβγ

(
(uα

Rdβ
R)(u

γ
LeL) + (1 + |Uud|2)(uα

Ldβ
L)(u

γ
ReR)

)
, (2.31)

where Uud is the (1, 1) component of the CKM matrix. The decay rate for this mode is given
by

Γ(p→ π0 + e+) =
mp

32π

(
1−

m2
π0

m2
p

)2 2

∑
I=1
|C(0)

I (µ)W I
0(µ)|2 . (2.32)

∗Notice that the propagators of the vector superfields differ from those of canonically normalized gauge
bosons by a factor 1/2 under our convention for the kinetic terms of the vector superfields.
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Here, mp and mπ0 are respectively the masses of a proton and a neutral pion. C(0)
I are the

Wilson coefficients while W I
0 represents the hadron matrix elements.

ϵαβγ ⟨0| (uα
Rdβ

R)u
γ
L |p⟩ = W1

0 PLup ,

ϵαβγ ⟨0| (uα
Ldβ

L)u
γ
R |p⟩ = W2

0 PRup .
(2.33)

µ represents the renormalization scale and the scale dependence is vanished up to the ap-
propriate order in perturbation theory, that is, the µ-dependences of C(0)

I and W I
0 cancel with

each other.
We estimate for C(0)

I (µ) perturbatively, while we can not do for W I
0 . Since the QCD

coupling becomes strong at the low-energy scale, the hadron matrix elements should be
estimated by the non-perturbative way such as the lattice calculation. There are two ways of
calculating the hadron matrix elements; one is the indirect method and another is the direct
method. The direct method is a direct calculation of the three-point functions of the meson-
operator-baryon, while the indirect method is based on the low-energy chiral perturbation
theory and is an indirect calculation through the two-point functions. In our numerical
analysis, we use the results from the lattice simulation with direct method and N f = 2 + 1
dynamical domain-wall fermion [41].

W1
0 (µ = 2 GeV) = −0.103(23)(34) GeV2 ,

W2
0 (µ = 2 GeV) = 0.133(29)(28) GeV2 .

(2.34)

The first and second errors in W I
0 show the statistical and systematic errors, respectively.

Ref. [41] has shown that the total error for W1
0 (W2

0 ) is 40% (30%).
While the hadron matrix elements are estimated at the hadronic scale (µ = 2 GeV), the

initial condition for the Wilson coefficients is given at the GUT scale (∼ 2× 1016 GeV). It is
important to include the RGE effects in order to evaluate the low-energy observables. In-
deed, the large hierarchy between the GUT and EW scales leads to a significant logarithmic
corrections to the Wilson coefficients, while the strong coupling around the hadronic scale
also generates large corrections to them. The former is called the short-range effects, on the
other hand the latter is called the long-range effects.

Perturbative calculations for the Wilson coefficients have been already performed at par-
tially two-loop level. For long-range effects, the two-loop RGEs by the strong coupling were
derived in Ref. [46]. The short-range renormalization factors for effective operators are also
estimated in several literature; in the SM [45] and in the SUSY SM [47]. The above authors
have taken into account only the gauge interactions for the short-range factors. Indeed, the
effective operators for the dominant decay mode include only the first generation quarks
and leptons, and thus the Yukawa corrections would be negligible.

Anyway, the comparable corrections have not been included in the short-range renor-
malization effect, that is, the finite threshold corrections.
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2.3 GUT Mass Spectrum Constraints

In the next leading order (NLO) calculations, couplings in the effective field theory (EFT)
include effects of massive degrees of freedom via threshold corrections. In particular, a mass
spectrum of GUT particles is constrained using low-energy coupling constants and their
threshold corrections. In this section, we review the constraint on the GUT mass spectrum
via the threshold corrections.

The gauge couplings in the EFT relate with the unified coupling at one-loop level as
follows

1
g2

i (µ)
=

1
g2

5(µ)
− ξi(µ) . (2.35)

Here, µ is the matching scale, which we set to be µ = 2× 1016 GeV, and ξi is the threshold
correction for gi. This threshold correction in the DR scheme [122] is obtained as [123, 124]

ξi(µ)δ
AB =

1
48π2

[
−21tr

(
IAB
iV ln

MV

µ

)
+ 8tr

(
IAB
iF ln

MF

µ

)
+ tr

(
IAB
iS ln

MS

µ

)]
, (2.36)

where MV , MF, and MS are the mass matrices of a massive gauge boson, a massive Dirac
fermion, and a massive real scalar boson. The first term includes contributions from not
only the massive vector boson but also ghost and Nambu-Goldstone (NG) bosons. We use a
shorthand notation IAB

iX ≡ TA
iXTB

iX (X = V, F, and S). TiX is the generators for the unbroken
symmetry. The subscript X = V, F, and S represent the vector boson, the Dirac fermion, and
the scalar bosons, respectively.

In supersymmetric field theories, we can write the threshold correction in terms of su-
perfields. A vector superfield consists of a gauge field and two Weyl fermions, while a chiral
superfield does of a complex scalar and two Weyl fermions. All components composing a
superfield have the same mass, so that mass matrices are proportional to the unit matrices.
For vector superfields, the threshold correction is given by

4πξi(µ) =
1

2π
(−2C) ln

MV

µ
. (2.37)

where CδAB = tr IAB
iV . Here, of course, this threshold correction includes the contribution

from the absorbed NG supermultiplets. For chiral superfields, the threshold correction is

4πξi(µ) =
1

2π
T ln

MS

µ
, (2.38)

with TδAB = tr IAB
iS .
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Since the gauge couplings unify into a single one in the SUSY GUTs, we obtain two
independent equations without g5 from Eq. (2.35). We take two independent equations as

3
g2

2(µ)
− 2

g2
3(µ)

− 1
g2

1(µ)
= −3ξ2(µ) + 2ξ3(µ) + ξ1(µ) ,

5
g2

1(µ)
− 3

g2
2(µ)

− 2
g2

3(µ)
= −5ξ1(µ) + 3ξ2(µ) + 2ξ3(µ) .

(2.39)

The right-hand side of these equations depends only on the GUT mass spectrum. In the next
chapter, we will show explicit forms in the minimal SU(5) model and the missing partner
SU(5) model. The left-hand side is just the gauge couplings at the GUT scale, which are
evolved using two-loop RGEs. We get them using low-energy observables and assumptions
of a model at intermediate scale. In other words, since we know the values of the left-hand
side under some assumptions, the GUT mass spectrum in the right-hand side is constrained.
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Chapter 3

Threshold Corrections to Dimension-six
Operators

As we mentioned in Chapter 2, the NLO calculations for dimension-six baryon-number vi-
olating processes have been already performed partially. Indeed, the finite threshold correc-
tions have not been taken into account in the NLO calculations [45–47]. In this section, we
discuss the finite corrections to the baryon-number violating dimension-six operators at the
SUSY and GUT scales.

This chapter is based on Refs. [125, 126].

3.1 Threshold Correction at SUSY Scale

In this section, we derive threshold corrections of dimension-six operators at the SUSY scale.
We concentrate only on gauge interactions, again.

Two-Point Function

Now, we estimate threshold corrections to the two-point function of fermions. After picking
the UV divergence, we obtain the two-point function of SM fermions ψ including the one-
loop finite corrections as follows:

iΓψ
full =

[
1− 1

16π2 ∑
a

g2
aCa(Φ) f (M2

a , m2
ϕ) + (SM contributions)

]
iΓψ

0 . (3.1)

Here, Γψ
0 ≡ /p − mψ denotes the tree-level two-point function of ψ with four-momentum

pµ and tree-level mass mψ. Ma and mϕ are the masses of gaugino and the superpartners of
ψ, respectively. The second term arises from the gaugino-sfermion loop and the third term
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describes the contribution from the SM loops. ga and Ca(Φ) are the SM gauge coupling and
the quadratic Casimir invariant, respectively. The loop function f is defined as

f (x, y) ≡ 2
∫ 1

0
ds (1− s) ln [sx + (1− s)y] , (3.2)

where all mass parameters are normalized by renormalization scale µ. It is easily found that
f (x, x) = 1

2 ln x, which corresponds to the case of degenerate masses.
In the SM, the one-loop corrected two-point function has the form

iΓψ
SM =

[
1− λψ + (SM contributions)

]
iΓψ

0 , (3.3)

where λψ denotes the one-loop threshold correction to the two-point function of ψ. Then,
we get λψ after matching the two-point functions in the two theories:

λψ =
1

16π2 ∑
a

g2
aCa(Φ) f (M2

a , m2
ϕ) . (3.4)

Four-Fermi Vertices

The baryon-number violating dimension-six operators are induced by the non-renormalizable
Kähler potential. The supersymmetric interaction term including four-Fermi operators is
given by the following Kähler potential.

Cijkl
∫

d4θ Φ†
i Φ†

j ΦkΦl = −
Cijkl

4

[
□(ϕ∗i ϕ∗j )ϕkϕl − 2∂µ(ϕ

∗
i ϕ∗j )∂

µ(ϕkϕl) + ϕ∗i ϕ∗j □(ϕkϕl)
]

− iCijkl

2
(ϕ∗i Ψj + Ψiϕ

∗
j )γ

µ←→∂µ (ϕkΨl + Ψkϕl)

− Cijkl

2
Ψiγ

µPLΨlΨjγµPLΨk .

(3.5)

Here, Φi (Φ†
i ) is a chiral (anti-chiral) superfield. Scalar and four-component spinor compo-

nents of Φi are denoted as ϕi and Ψi, respectively. The symbols □ and
←→
∂µ are respectively

defined as □ = ∂µ∂µ and A
←→
∂µ B = A∂µB − ∂µ AB. The roman indices i, j, k, l describe the

gauge and flavor indices. Cijkl denotes the Wilson coefficient of the operators.
Fig. 3.1 shows the one-loop diagrams giving the four-Fermi interactions after integrating

out superpartners. In these figures, the blobs denote the operator given by the second line of
Eq. (3.5). Only four diagrams in Fig. 3.1 contribute as finite corrections to a decay rate at the
SUSY scale. This is because one of two scalar fields must originate from chiral superfields
and another from the anti-chiral ones. The one-loop contributions shown in Fig. 3.1 are
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(1) (2)

(3) (4)

i i

i i

j

jj

j

kk
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ll
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Figure 3.1: Four-Fermi interactions induced by one-loop diagrams. Blobs denote effective
vertices including two fermions and two scalars, which are induced by the same Kähler
potential. Solid and dashed lines describe fermion and scalar lines, respectively, while wavy-
solid lines indicate gauginos.

given by;

iM1 = − ig2
a

16π2 Cnimk ∑
a
(Ta

jnTa
ml)F(m2

ϕm , m2
ϕn , M2

a)
⟨
Ojlik

⟩
,

iM2 = − ig2
a

16π2 Cjnlm ∑
a
(Ta

inTa
mk)F(m2

ϕm , m2
ϕn , M2

a)
⟨
Ojlik

⟩
,

iM3 =
ig2

a
16π2 Cnilm ∑

a
(Ta

jnTa
mk)F(m2

ϕm , m2
ϕn , M2

a)
⟨
Ojkil

⟩
,

iM4 = − ig2
a

16π2 Cjnmk ∑
a
(Ta

inTa
ml)F(m2

ϕm , m2
ϕn , M2

a)
⟨
Ojkil

⟩
.

(3.6)

Here, the subscript i forMi corresponds to the label (i) of Fig. 3.1. Ma and mϕm represent the
masses of gaugino and the superpartner of Ψm, respectively. We use a shorthand notation
for operators Oijkl defined by Oijkl ≡ Ψiγ

µPLΨjΨkγµPLΨl. ⟨. . .⟩ denotes the matrix element.
We also define the loop function F(x, y, z) as

F(x, y, z) =
3
4
+

x2(y− z) ln x + y2(z− x) ln y + z2(x− y) ln z
2(x− y)(y− z)(z− x)

. (3.7)

Here, all masses are normalized by the renormalization scale µ, again.
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Next, we concentrate on proton decay operators. However, this result is applicable to
other operators consisting of two chiral and two anti-chiral superfields, for instance flavor-
changing neutral currents.

Baryon-Number Violating Operators in SUSY SM

Let us now consider baryon-number violating operators in the SUSY SM. The Kähler po-
tential for these operators is given by Eq. (2.29). The baryon-number violating four-Fermi
operators are given by

L∆B =
2

∑
i=1

C(i)
4FO

(i)
4F , (3.8)

with operators

O(1)
4F = ϵαβγϵrs(uαγµPLqrγ)(d

β
γµPLls) ,

O(2)
4F = ϵαβγϵrs(uαγµPLqsγ)(eγµPLqβr) ,

(3.9)

and Wilson coefficients C(1)
4F = C(2)

4F = g2
5/2M2

X. The Wilson coefficients in the low-energy
effective field theory (EFT) include threshold corrections: we simply redefine

C(i)
4F → (1− λ

(i)
SUSY)C

(i)
4F , (3.10)

where λ
(i)
SUSY denotes the threshold correction to C(i)

4F .
After matching amplitudes in the SM and those in the SUSY SM, we find the threshold

corrections λ
(i)
SUSY at the SUSY scale as follows;

λ
(1)
SUSY = −1

2
(λu + λq + λd + λl)−

g2
3

16π2

(
1
3

F(m2
ũ, m2

q̃, M2
3) +

1
3

F(m2
d̃
, m2

q̃, M2
3)

)
−

g2
Y

16π2

(
2
9

F(m2
ũ, m2

q̃, M2
1)−

1
9

F(m2
d̃
, m2

q̃, M2
1)−

2
3

F(m2
l̃
, m2

ũ, M2
1) +

1
3

F(m2
l̃
, m2

d̃
, M2

1)

)
,

λ
(2)
SUSY = −1

2
(λu + λe + 2λq)−

g2
3

16π2
2
3

F(m2
ũ, m2

q̃, M2
3)

−
g2

Y
16π2

(
4
9

F(m2
ũ, m2

q̃, M2
1)−

2
3

F(m2
ẽ , m2

q̃, M2
1)

)
.

(3.11)

Here, mϕ (ϕ = q̃, ũ, d̃, l̃, ẽ) denotes the sfermions mass while M1 and M3 denote the masses
of bino and gluino, respectively. The loop function F is defined in Eq. (3.7), again. λψ (ψ =
q, l, u, d, e) is defined in Eq. (3.4), and represents the one-loop threshold corrections to the
two-point functions of the SM chiral fermions.
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3.2 Threshold Corrections at GUT scale

In supersymmetric theories, an effective Kähler potential is useful to derive radiative correc-
tions. In order to evaluate the radiative corrections, we discuss the effective Kähler potential
at the one-loop level, and evaluate the threshold corrections to the baryon-number violating
operators.

First of all, let us discuss a general effective supersymmetric action Γ[Φ, Φ†]. which is the
function of chiral superfield Φ, anti-chiral superfield Φ†, and their derivatives. The general
form of the effective supersymmetric action would be as follows,

Γ[Φ, Φ†] =
∫

d4xd4θ Leff(Φ,DAΦ,DADBΦ, · · · , Φ†,DAΦ†,DADBΦ†, · · · )

+

{∫
d4xd2θ L(c)eff (Φ,DAΦ,DADBΦ, · · · ) + h.c.

}
,

(3.12)

where DA is the superspace covariant derivative which consists of ∂µ, Dα, and Dα̇. Here, we
do not include vector superfields for simplicity. The perturbative corrections appear only
in the D term due to the non-renormalization theorem [48]. The effective supersymmetric
Lagrangian Leff is divided into two parts under ∂µΦ = 0,

Leff = K(Φ, Φ†) +F (DαΦ,D2Φ,Dα̇Φ†,D2
Φ†; Φ, Φ†) , (3.13)

where K(Φ, Φ†) is the effective Kähler potential and F (DαΦ,D2Φ,Dα̇Φ†,D2
Φ†; Φ, Φ†) is

called the effective auxiliary potential. While some diagrams may generate the terms in-
cluding superfields on which more than three covariant derivatives act, we may always
obtain the above form using algebra of super-covariant derivatives (D-algebra). ∗ The ef-
fective auxiliary potential vanishes in the limit that DαΦ = 0 and Dα̇Φ† = 0, so that the
effective Kähler potential is equivalent to the effective Lagrangian in this limit.

Below, we study the threshold corrections to the baryon-number violating dimension-six
operators at the GUT scale with the effective Kähler potential. First, we calculate the effec-
tive actions for constant fields in both full and effective theories at the one-loop level with the
supergraph technique [56]. We adopt the modified dimensional reduction (DR) scheme [122]
as the renormalization scheme of the gauge coupling constants while we impose the on-shell
condition for the mass on the massive vector superfield. We also introduce the IR cut off in
order to control fictitious IR singularities. Then, we identify the effective Kähler potential
for the baryon-number violating operators by taking DαΦ = 0 and Dα̇Φ† = 0 together with
the D-algebra. By matching the effective Kähler potentials in full and effective theories,
we derive the one-loop threshold corrections to the Wilson corrections of the dimension-six
operators.

∗We give formulae for the D-algebra in Appendix C.1.
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Radiative Corrections in the UV Theory

To begin with, we show the radiative corrections to the baryon-number violating dimension-
six operators in the full theory, where the massive vector superfield is activated. The ra-
diative corrections consist of the wave function renormalization of matter superfields, the
vacuum polarization of the massive vector superfield, the vertex correction, and the box-
like corrections. In this subsection, we show only the results of the supergraph calculation.
Details of the calculations are given in Appendix E.

Two-Point Functions for Matter Superfields

First we study two-point functions for matter superfields at the one-loop level. The functions
generally include UV divergences which are renormalized by the wave function renormal-
ization factors. We estimate the factors in the DR scheme, ignoring the contributions from
the Yukawa interactions. The radiative corrections to the two-point functions via the gauge
interactions are determined by the gauge groups, in the both of the full theory and the EFT.

In general, the renormalized two-point function for a chiral superfield Φ is defined as

Γ2-pt
Φ = Γ̃2-pt

Φ + δZΦ , (3.14)

with the un-renormalized two-point function Γ̃2-pt
Φ and a counter term δZϕ = ZΦ − 1. The

wave function renormalization constant for the matter superfield ZΦ absorbs the UV diver-
gent terms proportional to 1/ϵ′ in the DR scheme: ∗

ZΦ = 1 + C5(Φ)
g2

5
4π2 ×

1
ϵ′

, ZEFT
Φ = 1 +

3

∑
a=1

Ca(Φ)
g2

a
4π2 ×

1
ϵ′

. (3.15)

Here, ZΦ and ZEFT
Φ denote the wave function renormalization factors in the full and the

effective theories, respectively. g3, g2, and g1 are the gauge couplings of SU(3)C, SU(2)L,
and unified U(1)Y gauge symmetries, again. C5(Φ) and Ca(Φ) (a = 3, 2, 1) are the quadratic
Casimir of Φ in SU(5), SU(3)C, SU(2)L, and GUT normalized U(1)Y gauge symmetries. †

We obtain the one-loop renormalized two-point function for a chiral superfield Φ in the
full theory as follow.

Γ2-pt;1-loop
Φ =

(
1 + aΦ f (M2

X) + bΦ f (µ2
IR)
)

Γ2-pt
Φ 0 . (3.16)

Here, Γ2-pt
Φ 0 is the tree-level two-point function, and aΦ and bΦ are the constants obtained

from the one-loop calculations,

aΦ = −
(

C5(Φ)−
3

∑
a=1

Ca(Φ)

)
g2

5
8π2 , bΦ = −

3

∑
a=1

Ca(Φ)
g2

5
8π2 . (3.17)

∗2/ϵ′ ≡ 2/ϵ − γ + ln 4π is defined and ϵ satisfies ϵ = 4− d in the d-dimension momentum space. γ =
0.57721 . . . is the Euler’s constant.

†C1(Φ) is given by C1(Φ) = (QΦ
Y )

2 × (3/5), where QΦ
Y is hypercharge of Φ.
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Figure 3.2: Diagrams of chiral multiplets for radiative correction to two-point function of
superfield for massive vector superfield.

Figure 3.3: Diagrams of gauge and ghost superfields for radiative correction to two-point
function of superfield for massive vector superfield.

We set the mass of the MSSM vector superfields to be a non-zero value which is denoted by
µIR in order to regularize the IR divergence, as mentioned above. MX represents the mass
of the massive vector superfield. The function f in Eq. (3.16) is defined as

f (M2) ≡ 1− ln
M2

µ2 , (3.18)

where µ denotes the renormalization scale in the DR scheme. The two-point functions in the
effective theory are derived by removing the massive vector contribution in Eq. (3.16) when
g5 = g3 = g2 = g1.

Vacuum Polarization of Massive Vector Superfield

Next, we estimate radiative corrections to the propagator for the massive vector super field,
which are known as vacuum polarization. Not only the MSSM superfields but the GUT-scale
superfields such as the SU(5)-adjoint chiral superfield contribute to the vacuum polarization
of the massive vector superfield.

The chiral superfields have three kinds of the contributions to the vacuum polarization,
which is described in Fig. 3.2. The diagrams (a) and (b) are induced by the supergauge
interaction Φ†VΦ and Φ†V2Φ, respectively. Arrows in Fig. 3.2 (a) and (b) indicate chirality
flow from an anti-chiral superfield into a chiral superfield. The diagram (c) is generated
by the SU(5)-breaking Higgs superfield, which has interactions ⟨Σ†⟩V2Σ and Σ†V2⟨Σ⟩ after
acquiring the VEV.
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For the gauge sector, we have four-type diagrams to contribute to the two-point function
of the massive vector superfield. Fig. 3.3 shows the diagrams. The diagrams (a) and (b)
in Fig. 3.3 arise from the self interactions of the vector superfields. If the internal vector
superfields in the diagram (b) are massless, the diagrams have no contribution to the two-
point function in the DR scheme. The diagrams (c) and (d) show ghost contributions.

Finally, the two-point function of the massive vector superfield is in the form as below:

Γ(2)
X (k2) = k2 −M2

X − ΣX(k2) , (3.19)

where ΣX(k2) is the renormalized vacuum polarization for massive vector superfield. The
UV divergence in the one-loop corrections is absorbed by the wave function factor (ZX)
and mass (MX) of the massive vector superfield. In this thesis, the on-shell condition
for the mass of the massive vector superfield is imposed, so that this leads the equation
ΣX(M2

X) = 0. This is because heavy particles are decoupled from ΣX(0) under the on-shell
condition, if they have SU(5) symmetric masses much larger than the mass of the massive
vector superfield. ∗ ΣX(0) will appear in the threshold correction to the baryon-number
violating operators.

The counter term δZX is determined to absorb the UV divergence which arises from the
gauge contributions and the matter contributions such as Figs. 3.2 and 3.3. We obtain

δZX = ZX − 1 =
g2

5
8π2

(
3C2(G)−∑

R
IG(R)

)
× 1

ϵ′
, (3.20)

where IG(R) and C2(G) respectively represent a Dynkin index for an R-representation field
and a quadratic Casimir invariant for the gauge group G. As expected, δZX is proportional
to the one-loop beta function for the SU(5) gauge coupling constant.

Let us now discuss the finite contributions to the vacuum polarization from various rep-
resentations in SU(5). First, fields in the irreducible representation of SU(5) are decom-
posed into irreducible representations of the SM gauge groups. We give the SM decom-
position of some SU(5) representations in Appendix D.4. The vacuum polarization of the
massive vector superfield is given by

ΣX(p2) = ∑
Reps.

ΣRep.
X (p2)−

g2
5

16π2 C2(G)

[
5p2

2
A(p2, M2

X, 0) + B(p2, M2
X, 0)

]
+ (p2-independent terms) ,

(3.21)

with the vacuum polarization from a certain representation

ΣRep.
X (p2) =

g2
5

16π2 ∑
i,j

bijB(p2, M2
i , M2

j ) +
g2

5M2
X

16π2 ∑
i

ai A(p2, M2
X, M2

i ) , (3.22)

∗The GUT-scale mass spectrum may be constrained using the gauge coupling unification [127,128]. In these
Refs. , authors use the threshold correction to the gauge coupling constants at the GUT scale at the one-loop
level so that the renormalization condition for the mass of the massive vector superfield does not appear there.
We need the threshold correction at the two-loop level in order to get the constraint on the on-shell mass.
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where the superscript “Rep.” indicates the SU(5) representation, such as 5 + 5, 10 + 10, 24,
and so on. i, j = 1, · · · , N (i, j = 1, · · · , N) denote the labels of irreducible representations of
the SM gauge groups (and its complex conjugated representation). The first term in Eq. (3.21)
indicates the sum of the contributions from chiral superfields. The second term in Eq. (3.21)
comes from the gauge sector illustrated by Fig. 3.3. In particular, the first and second terms
in the square bracket arise from the gauge and ghost loops, respectively. The p2-independent
terms come from the diagrams Fig. 3.2 (b), Fig. 3.3 (b), and Fig. 3.3 (d). However, they do
not give any corrections since we take the on-mass shell condition

ΣX(p2) = ΣX(p2)− ΣX(M2
X) , (3.23)

for the vacuum polarization of the massive vector superfield. Coefficients ai and bij in
Eq. (3.22), which we call the vacuum polarization coefficients, are determined by the in-
teractions between the massive vector superfield and the corresponding chiral superfields.
The loop functions A and B in Eq. (3.22) are defined by

A(p2, M2
1, M2

2) ≡
∫ 1

0
dx ln

∆
µ2 ,

B(p2, M2
1, M2

2) ≡
∫ 1

0
dx
[

∆− (2∆ + x(x− 1)p2) ln
∆
µ2

]
,

(3.24)

where ∆ = x(x− 1)p2 + xM2
2 + (1− x)M2

1.
The first term in Eq. (3.22) comes from the gauge interaction between the massive vec-

tor and (anti-)chiral superfields. The second term in Eq. (3.22) arises from the interactions
with the GUT-breaking VEV shown in Fig. 3.2 (c). The variables of the functions Mi denote
the mass eigenvalues of chiral superfields in the loop. We show the vacuum polarization
coefficients ai and bij in Table 3.1 for some SU(5) representations. The ai and bij not listed
in Table 3.1 are zero. Here, we list ai and bij from 5 + 5, 10 + 10, 24, and 75 representations.
Although the missing-partner model includes 50 + 50 pairs to induce the masses of color-
triplet Higgs multiplets, their mass scales are set to be at the Planck scale in order to keep
the theory in the perturbative regime. Hence, they do not contribute to the vacuum polar-
ization of the massive vector superfield. In Appendix D.4, we display ai and bij only from
SU(5) representations, whose Dynkin indices are smaller than the Dynkin index of the 75
representation.

As a concrete model, we show the vacuum polarization in the minimal SUSY SU(5) GUT
in the presence of the extra vector-like matters. The unified gauge coupling is enhanced in
these models as we discussed in Section 1.3, so that it is important to estimate the size of
the threshold corrections. For simplicity, we treat extra matters and the MSSM matters as
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Table 3.1: Vacuum polarization coefficients bij and ai. Coefficients which are not listed here
are zero. a0 is coefficient from NG and MSSM vector supermultiplets loops, while ai (i =
1, 2, · · · ) is coefficient from massive vector and chiral supermultiplets loops. bij and ai which
are not listed here are zero.

Reps. bij ai

5 + 5 b12 = b12 = 1

10 + 10
b13 = b13 = 1
b23 = b23 = 2

24

b14 = b15 = 3/2 a0 = 5/2
b24 = b25 = 8/3 a1 = 3
b34 = b35 = 5/6 a2 = 16/3

a3 = 5/3

75

b14 = b23 = 1/3 a0 = 5/2
b16 = b25 = 2 a1 = a2 = 6

b37 = b47 = 4/3 a7 = 8/3
b38 = b48 = 2/3 a8 = 4/3

b39 = b49 = 26/3 a9 = 12
b58 = b68 = b59 = b69 = 6

massless fields.

α̃−1
5 ΣX(p2) = [(N5 + N5) + 3(N10 + N10)] B(p2, 0, 0)

+
25
3

B(p2, M2
Σ, M2

X) +
5
3

B(p2, M2
Σ24

, M2
X)

+ 2B(p2, M2
MHC

, 0)

+
5
6

M2
X

[
3A(p2, M2

X, 0) + 10A(p2, M2
X, M2

Σ) + 2A(p2, M2
X, MΣ24)

]
− 5C2(G)

p2

2
A(p2, M2

X, 0)− C2(G)B(p2, M2
X, 0)

+ (p2-independent terms) ,

(3.25)

where Nr (r = 5, 5, 10, 10) denotes the number of massless superfields in r representation,
and α̃5 = g2

5/16π2. As we have seen, the first-three lines in Eq. (3.25) show the chiral su-
perfield contributions illustrated in Fig. 3.2 (a). They consist of contributions from massless
chiral superfields (the first line), the adjoint Higgs superfields (the second line), and the
color-triplet Higgs superfield (the third line). In the second line, the first term is the sum of
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Figure 3.4: Diagrams for vertex correction

the color-octet and weak triplet contributions, and the second term is the singlet contribu-
tion. The fourth line is the contribution from the adjoint supermultiplets with GUT-breaking
VEV, as in the second term of Eq. (3.22). We have already explained the last two lines in
Eq. (3.21). In the case of the minimal SUSY SU(5) GUT, N5 = N10 = 3 and N5 = N10 = 0.

The re-summed propagator DXX(p2) of massive vector superfield in terms of the su-
perfield notation is given by DXX(p2) = −i/(2Γ(2)

X (p2)). After the spontaneous symmetry
breaking of the GUT gauge symmetry, the baryon-number violating dimension-six opera-
tors are induced by the massive vector superfield, and the coefficients are proportional to
1/M2

X. In order to match the full and the effective theories at the one-loop level, we need
to take into account the one-loop corrections to the propagator of the massive vector super-
field. Since the momenta of external fields in the baryon-number violating dimension-six
operators are negligible compared with the mass of the vector superfield, we may set the
momentum of internal massive vector superfield zero.

Vertex Corrections

Next, we show one-loop vertex corrections to the interactions of massive vector superfields
with quark and lepton superfields. The tree-level interactions are given in Eq. (2.27).

Fig. 3.4 shows one-loop diagrams contributing to the vertex corrections. Since the super-
symmetric gauge interactions in terms of the superfield formalism have the form Φ†e2gVΦ,
there exist diagrams which do not appear in calculation using component fields. Indeed,
multi-vector interactions as Φ†VnΦ (n ≥ 3) also induce one-loop diagrams, which are il-
lustrated in Fig. 3.4 (f). The diagram (a) has only the vertex 2gΦ†VΦ, and the diagrams
(b) and (c) include the vertex 2g2Φ†V2Φ. The diagrams (d) and (e) include the three-point
self interactions of vector superfields. Since the external vector superfield is for the broken
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gauge symmetry, two internal vector superfields must be massive and massless ones. The
contribution from the diagram (f) is vanishing due to the superspace integral.

We now calculate the contributions from the diagrams (a)-(e) in Fig. 3.4. The momenta
of all the external superfields are set to be p2 = 0, for simplicity. In some diagrams, since
they contain IR divergent contributions in this momentum assignment, the non-zero masses
of the MSSM vector superfields (µIR) are introduced as IR regulators. Under this momen-
tum assignment, we carry out loop momentum integrals and Grassmann integrals, and we
discard the auxiliary terms. We expand the one-loop Kähler terms around p2 = 0, and then
we extract the dominant contributions around p2 = 0. The vertex corrections to the gauge
interactions between the MSSM matter superfields and the massive vector superfield are as
follows:

K(1)
V1

=

[
−2

5
C(v)

1 (µIR) +
21
5

C(v)
2 (µIR) + 5C(v)

2 (MX)

]
K(0)

V1
,

K(1)
V2

=

[
12
5

C(v)
1 (µIR)− 2C(v)

1 (MX) +
49
5

C(v)
2 (µIR) + 9C(v)

2 (MX)

]
K(0)

V2
,

K(1)
V3

=

[
2
5

C(v)
1 (µIR)− 4C(v)

1 (MX) +
29
5

C(v)
2 (µIR) + 13C(v)

2 (MX)

]
K(0)

V3
.

(3.26)

The contributions from the diagrams (d) and (e) in Fig. 3.4 are canceled each other. The co-
efficients C(v)

1 and C(v)
2 correspond to the correction from the diagram (a), and the ones from

the diagrams (b) and (c) in Fig. 3.4, respectively. After the loop momentum and superspace
integrals, we find that C(v)

1 and C(v)
2 are given by the functions of the mass of the internal

vector superfield M,

C(v)
1 (M) = −C(v)

2 (M) ≡ 1
2

g2
5

16π2

[
2
ϵ′

+ 1− ln
M2

µ2

]
. (3.27)

These loop functions are the coefficients of the effective Kähler potential K(v)
1 and K(v)

2 de-
fined in Appendix E in the limit that p2 vanishes.

Now, we determine the renormalization constants for the vertices. One-loop renormal-
ized vertex functions are given by

KV1 = K
(0)
V1

+K(1)
V1

+
(

Z1/2
L Z1/2

D Z1/2
X ZCV1

− 1
)
K(0)

V1
,

KV2 = K
(0)
V2

+K(1)
V2

+
(

Z1/2
U Z1/2

Q Z1/2
X ZCV2

− 1
)
K(0)

V2
,

KV3 = K
(0)
V3

+K(1)
V3

+
(

Z1/2
Q Z1/2

E Z1/2
X ZCV3

− 1
)
K(0)

V3
.

(3.28)

When KVn (n = 1, 2, 3) are described as KVn = CVnOVn with the operators OVn and the
Wilson coefficients CVn , ZCVn

are defined to renormalize the UV divergences in CVn . Then,
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Figure 3.5: Box-like diagrams

we find the renormalization factors for CVn (n = 1, 2, 3) as follows.

ZCV1
= ZCV2

= ZCV3
= 1−

g2
5

16π2

(
3C2(G)−∑

R
IG(R)

)
× 1

ϵ′
, (3.29)

which are consistent with the one-loop beta function for the gauge coupling.

Box-like Corrections

The box-like diagrams contribute to the radiative corrections of the dimension-six operators.
Fig. 3.5 shows all type of the box-like diagrams; we refer to the diagram (a) as the box
diagram, the diagram (b) as the crossing box diagram, and the diagram (c) as the triangle
diagram. The diagram (d) vanishes due to the superspace integral. Thus, it is sufficient
that we evaluate the diagrams (a)-(c) in Fig. 3.5. In these figures, one of two internal gauge
superfield lines must be massive since we focus on the baryon-number violating operators.
As is the case in the vertex corrections, we set all momenta of the external superfields to be
p2 = 0 and the fictitious masses of the MSSM vector superfields to be µIR, and we remove the
auxiliary terms. For this momentum assignment, we find that the box diagram (a) vanishes
while the crossing box diagram (b) and the triangle diagram (c) are given by the following
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Figure 3.6: Radiative corrections in EFT

functions:

Ccross(MX) = −Ctriangle(MX) ≡ −
1
2

g2
5

16π2 ln
M2

X
µ2

IR
. (3.30)

These loop functions correspond to the coefficients in the effective Kähler potential Kcross
and Ktriangle defined in Appendix E in the limit that p2 vanishes.

In SUSY SU(5) GUTs, the baryon-number violating dimension-six operators are gen-
erated at the tree level in Eq. (2.29). The one-loop radiative corrections from the box-like
diagrams are written by Ccross and Ctriangle:

K(Box)
1 =

[
−18

5
Ccross(MX) +

14
5

Ctriangle(MX)

]
K(0)

1 ,

K(Box)
2 =

[
−14

5
Ccross(MX) +

22
5

Ctriangle(MX)

]
K(0)

2 .
(3.31)

Radiative Corrections in EFT

Now we consider the radiative correction to the higher-dimensional Kähler terms in the
EFT. There are three kinds of contributions to the radiative correction. The first one is the
diagram (a) in Fig. 3.6, where a vector superfield is attached to two chiral superfields or two
anti-chiral superfields. The second one is the diagram (b), in which a vector superfield
is attached to both a chiral and an anti-chiral superfield. The third one is the radiative
corrections induced by the gauge interaction of the composite operators.

We adopt the same momentum assignment which we used in the full theory. After the
loop momentum and the superspace integrals, we derive the one-loop corrections as

K(1):eff
1 =

[(
16
3

g2
3 +

4
15

g2
1

)
CEFT

1 (µIR) +

(
32
3

g2
3 +

8
15

g2
1

)
CEFT

2 (µIR)

]
K(0)

1 ,

K(1):eff
2 =

[(
16
3

g2
3 +

4
15

g2
1

)
CEFT

1 (µIR) +

(
32
3

g2
3 +

8
15

g2
1

)
CEFT

2 (µIR)

]
K(0)

2 .
(3.32)
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Here, the diagram (a) vanishes while the diagrams (b) and (c) are given by CEFT
1 (µIR) and

CEFT
2 (µIR), respectively:

CEFT
1 (µIR) = −CEFT

2 (µIR) ≡
1

16π2
1
2

(
2
ϵ′

+ 1− ln
µ2

IR
µ2

)
. (3.33)

These functions correspond to the coefficients defined in Eq. (E.17) in the limit: p2 vanishes.
The effective Kähler potentials up to the one-loop level are described as

Keff
1 = K(1):eff

1 +K(0)
1 +

(
ZC1 ZEFT

U
1/2

ZEFT
Q

1/2
ZEFT

D
1/2

ZEFT
L

1/2 − 1
)
K(0)

1 ,

Keff
2 = K(1):eff

2 +K(0)
2 +

(
ZC2 ZEFT

E
1/2

ZEFT
U

1/2
ZEFT

Q − 1
)
K(0)

2 .
(3.34)

The logarithmic divergences are absorbed by the counter terms of CA, and then we have

ZC1 = 1− 2
16π2ϵ′

(
11
30

g2
1 +

3
2

g2
2 +

4
3

g2
3

)
,

ZC2 = 1− 2
16π2ϵ′

(
23
30

g2
1 +

3
2

g2
2 +

4
3

g2
3

)
.

(3.35)

These are consistent with the results of Ref. [43]. In the next section, we determine the
threshold corrections for the wave functions and the Wilson coefficients of the dimension-
six baryon-number violating operators by matching the full and effective theories.

Matching Conditions for Dimension-Six Operators

In the previous subsections, we have shown the radiative corrections to two-, three-, and
four-point vertex functions in the SUSY SU(5) GUTs and we have shown also the radiative
corrections to the Wilson coefficients of the dimension-six operators in the EFT. Now, we
determine the threshold corrections by matching the amplitudes in the EFT and those in the
full theory.

First, let us discuss the threshold corrections to the two-point functions for matter su-
perfields. As we have seen in Eq. (3.16), the one-loop two-point functions are divided into
two parts: one is linear to f (M2

X) and the other is linear to f (µ2
IR). The latter is the contribu-

tion from the MSSM gauge interactions, and the former is the contribution from the broken
gauge interaction in SU(5). On the other hand, the two-point functions in the EFT at the
GUT scale have the form;

Γ2-pt;eff
Φ = (1− λΦ)

(
1 + bΦ f

(
µ2

IR

))
Γ2-pt

Φ 0 . (3.36)

Here, the chiral superfield in the EFT is given by (1− λΦ/2)Φ (Φ is in the full theory). λΦ
is determined so as to match the two-point function in the EFT and that in the full theory:

λΦ(µ) =
g2

5
16π2 λ̂Φ f

(
M2

X

)
, (3.37)
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where (λ̂Q, λ̂U, λ̂D, λ̂L, λ̂E) = (3, 4, 2, 3, 6) is defined.
Next, we determine the threshold corrections for the baryon-number violating dimension-

six operators. The two-point functions of the matter superfields in the full theory and the
EFT are matched above, and we have determined the threshold corrections to the renormal-
izable kinetic terms. For a matter superfield Φ, the renormalizable kinetic term has the form
(1− λΦ)Φ†Φ in the EFT. The finite corrections to the two-point functions in the EFT appear
in the correction to the Wilson coefficients of higher-dimensional operators. The Wilson
coefficients of higher-dimensional operators themselves also include the finite corrections.
Thus, we redefine the effective Kähler potentials Keff

I (I = 1, 2) as the ones with threshold
corrections up to the one-loop level as follows:

Keff
1 = K(1):eff

1 +

(
1− λ1 −

1
2
(λU + λQ + λD + λL)

)
K(0)

1

+
(

ZC1 ZEFT
U

1/2
ZEFT

Q
1/2

ZEFT
D

1/2
ZEFT

L
1/2 − 1

)
K(0)

1 ,

Keff
2 = K(1):eff

2 +

(
1− λ2 −

1
2
(λE + λU + 2λQ)

)
K(0)

2

+
(

ZC2 ZEFT
E

1/2
ZEFT

U
1/2

ZEFT
Q − 1

)
K(0)

2 .

(3.38)

λ1 and λ2 are the threshold corrections to the Wilson coefficients for the baryon-number
violating operators.

In the full theory (the SUSY SU(5) GUTs), we have computed the effective Kähler poten-
tial for the dimension-six operators at the one-loop level,

Kfull
1 = − 1

2
1

M2
X + Σ(0)

CV2CV1O
(1) +K(Box)

1 ,

Kfull
2 = − 1

2
1

M2
X + Σ(0)

CV2CV3O
(2) +K(Box)

2 .
(3.39)

The first terms include the vacuum polarization of the massive vector superfield Σ(0) and
the one-loop effective couplings CV1 , CV2 , and CV3 which are defined in Eq. (3.28). The second
terms are the box corrections defined in Eq. (3.31).

There are IR divergences in Kfull
I and Keff

I (I = 1, 2), which are represented by µIR. The
divergences are absorbed by the operators O(I). ∗ Then, we divide the effective Kähler
potentials into the coefficients CI and the renormalized operator O(I)

r :

Kfull
I = Cfull

I O
(I)
r , Keff

I = Ceff
I O

(I)
r . (3.40)

∗Since the IR divergent terms from the box-like diagrams are proportional to ln M2
X/µ2

IR, we divide this
into ln M2

X/µ2 + ln µ2/µ2
IR where µ denotes the renormalization scale, and then the IR divergent terms are

absorbed by the operators.
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The one-loop coefficients in the full theory are given by

C(1):full
1

C(0)1

=
M2

X
M2

X + Σ(0)
−

g2
5

16π2

[
6 + 6

(
1− ln

M2
X

µ2

)
− 16

5
ln

M2
X

µ2

]
,

C(1):full
2

C(0)2

=
M2

X
M2

X + Σ(0)
−

g2
5

16π2

[
32
5

+ 8

(
1− ln

M2
X

µ2

)
− 18

5
ln

M2
X

µ2

]
,

(3.41)

where C(0)1 and C(0)2 are the tree-level ones: C(0)1 = C(0)2 = −g2
5/M2

X. The first-two terms
in square brackets arise from the vertex corrections, while the third term is the box correc-
tion. The vertex corrections are divided into two parts: the first term is the massless vector
contribution and the second term is the massive vector contribution.

In the EFT, we find the one-loop corrected coefficients

C(1):eff
1

C(0)1

= 1− λ1 −
6g2

5
16π2

(
1− ln

M2
X

µ2

)
− 14

5
g2

5
16π2 ,

C(1):eff
2

C(0)2

= 1− λ2 −
8g2

5
16π2

(
1− ln

M2
X

µ2

)
− 14

5
g2

5
16π2 .

(3.42)

Here, MX-dependent terms come from the threshold corrections to the wave function for
matter superfields.

We assume that the matching scale is µ = MGUT(≃ MX), where the unification g1 =
g2 = g3 = g5 is achieved. By comparing the amplitudes obtained in the full and effective
theories, we determine the threshold corrections to the Wilson coefficients of dimension-six
operators λ1 and λ2 at the one-loop level:

λ1 =
Σ(0)

M2
X + Σ(0)

+
g2

5
16π2

16
5

(
1− ln

M2
X

µ2

)
,

λ2 =
Σ(0)

M2
X + Σ(0)

+
g2

5
16π2

18
5

(
1− ln

M2
X

µ2

)
.

(3.43)

We find that the corrections to the wave function for the matter superfield and the vertices of
the massive vector superfield are canceled with each other as expected from the Ward iden-
tity and that the threshold corrections come from the corrections to the vacuum polarization
and the box-like contributions.

3.3 Numerical Results

In this section, we estimate the size of threshold corrections at the SUSY scale and the GUT
scale.
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SUSY Scale Threshold Corrections

To begin with, we evaluate the threshold effects at the SUSY scale in the split SUSY sce-
nario. As mentioned in Section 1.3, the heavy sfermion scenarios make the constraint on a
dimension-five proton decay mild. We assume that all sparticles except gauginos are de-
generate in mass MS. Gaugino masses are set to be as follows: bino and wino are degen-
erate in mass M1 = M2 = 3 TeV, and we treat the ratio of the gluino and bino masses
as a free parameter. In the numerical estimation, we set M3/M1 = 1, 3, and 9. We also
choose tan β = 3 since a small tan β is preferred to get the observed Higgs mass in the heavy
sfermion scenario [30, 86, 129]. The matching scale for the proton decay amplitudes is set to
be the sfermion mass scale MS.

We define the ratio of decay rates with and without SUSY threshold corrections in order
to estimate their effects. The ratio is approximately written as

R ≡
A(1)2

S + (1 + |Uud|2)2A(2)2
S

∣∣∣
w

A(1)2
S + (1 + |Uud|2)2A(2)2

S

∣∣∣
w/o

, (3.44)

with the short-distance renormalization factors

A(I)
S ≡

CI(mZ)

CI(MGUT)
, (3.45)

where CI(µ) (I = 1, 2) are the Wilson coefficients of the dimension-six operators at renor-
malization scale µ. The denominator of Eq. (3.44) includes only the threshold corrections at
the GUT scale, on the other hand the numerator of Eq. (3.44) includes threshold corrections
at both GUT and SUSY scales.

We see these threshold effects at the SUSY scale in Fig. 3.7, where the minimal SU(5)
model with all mass parameters and the GUT scale fixed at 2× 1016 GeV is considered. Let
us add a few comments.

First, if all sparticles are degenerate in mass, there is no contribution from the threshold
corrections. This is because the loop functions f and F behave as follows (µ = MS)

f (M2
S, M2

S) ∼
1
2

ln
M2

S
µ2 → 0 , F(M2

S, M2
S, M2

S) ∼ −
1
2

ln
M2

S
µ2 → 0 , (3.46)

Second, the ratio R approaches a constant in the limit of decoupled sfermions since these
loop functions behave as

f (M2
a , M2

S) ∼ −
1
4

(
1− 2 ln

M2
S

µ2

)
, F(M2

S, M2
S, M2

a) ∼
1
4

(
1− 2 ln

M2
S

µ2

)
, (3.47)

in the limit of MS ≫ Ma. In Fig. 3.7, the ratio R is enhanced when M3/M1 = 9 and MS ∼
O(10) TeV. In this case, the sfermion mass is smaller than the gluino mass is 27 TeV. In this
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Figure 3.7: Ratio of proton decay rates with and without threshold correction at SUSY
scale. At GUT scale, we assume the minimal SUSY SU(5) GUT model, and each decay rates
includes threshold correction at GUT scale. Bino mass M1 is set to be 3 TeV. Solid, broken,
and dotted lines respectively indicate M3/M1 = 1, 3, and 9.

case we should take the matching scale somewhere between the sfermion and gaugino mass
in order to minimize the 2-loop corrections.

As a result, we conclude that there is only a few % correction to proton lifetime in the
split SUSY scenario.

Minimal SU(5) with Extra Matters

Now, we give numerical results of the short-distance renormalization factor including thresh-
old corrections in the minimal SUSY SU(5) GUT and its vector-like extension. In the min-
imal SUSY SU(5) GUT, the X supermultiplets, the color-triplet Higgs supermultiplets, and
the adjoint Higgs multiplets acquire heavy mass through the VEV of the adjoint Higgs mul-
tiplet. First, we set the masses of the GUT particles to be degenerate in mass 2.0× 1016 GeV
since they are model-dependent parameters. ∗ The dependence of the threshold correction

∗The GUT mass spectrum may be constrained by the gauge coupling unification. In this subsection, we do
not use this constraint. However, we consider the constrained mass spectrum in the next subsection.
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on the GUT scale mass spectrum is shown later. The threshold corrections in the minimal
SUSY SU(5) GUT are divided into two parts: the one comes from the vacuum polarization
of the massive vector superfield as

λ1|vac. = λ2|vac. =
Σ(0)

M2
X + Σ(0)

= −3.68× 10−2 , (3.48)

another one comes from the box-type diagram:

λ1|vert. =
g2

5
16π2

16
5

(
1− ln

M2
X

µ2

)
= 1.03× 10−2 ,

λ2|vert. =
g2

5
16π2

18
5

(
1− ln

M2
X

µ2

)
= 1.15× 10−2 .

(3.49)

Then, by combining these contribution we obtain the numerical values of threshold correc-
tions as

λ1(MGUT) = −2.66× 10−2 , λ2(MGUT) = −2.53× 10−2 , (3.50)

where we assume that all sparticle masses are set to be MSUSY = 1 TeV. We set the renormal-
ization scale at which we match the amplitudes in the full theory and the EFT to MGUT =
2.0× 1016 GeV.

As in the previous subsection, the short-distance renormalization factors of Wilson coef-
ficients A(I):SUSY

S which include two-loop RGEs in the SUSY SM and threshold corrections
are defined by

A(I):SUSY
S ≡ CI(MSUSY)

CI(MGUT)
, (3.51)

These numerical factors are obtained by the RGEs at the two-loop level ∗

A(1):SUSY
S = 2.025 , A(2):SUSY

S = 2.118 . (3.52)

We have also evaluated the short-distance renormalization factor to the partial decay rate
(p → e+ + π0). We define the ratio of the short-distance renormalization factor with and
without the threshold correction to the Wilson coefficients of the dimension-six operators as
Eq. (3.44). The denominator and numerator correspond to the short-distance enhancement
factor of the nucleon decay rate without and with threshold corrections, respectively. We
obtain R = 1.052 in the minimal SUSY SU(5) GUT, that is, there is about 5% enhancement
compared with the short-distance renormalization factor without threshold corrections.

∗The RGEs for the gauge and Yukawa coupling constants and the Wilson coefficients for the baryon-number
violating dimension-six operators are summarized in Appendix G.
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Figure 3.8: GUT-scale particle mass dependence on renormalization factor of proton decay.
Left panel shows MHC dependence for MΣ = MX = 2× 1016 GeV. Right panel shows MΣ
dependence for MHC = MX = 2× 1016 GeV. Dotted line shows the degenerate mass case in
each panels.

We note that the mass relation between MΣ and MΣ24 is MΣ = 5MΣ24 in the minimal
SUSY SU(5) GUT. When we adopt this mass relation and we assume the masses of the GUT
particles are set to be MX = MΣ = 2.0× 1016 GeV, we have

A(1):SUSY
S = 2.014 , A(2):SUSY

S = 2.107 , (3.53)

and then, we obtain R = 1.041.
In Fig. 3.8, we describe the heavy mass dependence on the ratio of the short-distance

renormalization factor in the minimal SUSY SU(5) GUT. Here, we set the mass of the compo-
nent fields of the adjoint Higgs multiplet to be degenerate in MΣ, that is, we set MΣ24 = MΣ,
for simplicity. The left panel of Fig. 3.8 shows the color-triplet Higgs mass (MHC) depen-
dence of the ratio with the fixed adjoint Higgs mass MΣ = 2.0× 1016 GeV. The right panel
of Fig. 3.8 shows the adjoint Higgs mass (MΣ) dependence of the ratio with the fixed color-
triplet Higgs mass MHC = 2.0× 1016 GeV. Since, in a large MHC region, the vacuum polar-
ization behaves as Σ ∼ 1

2 M2
X(

1
2 − ln M2

HC
/µ2), the decay rate of proton is slightly enhanced

in this region.
In the SUSY SU(5) GUT with light vector-like matter scenario, the threshold corrections

to the Wilson coefficients of the dimension-six operators are enhanced since the unified
gauge coupling becomes large. This large unified coupling leads to the large renormal-
ization effect to the Wilson coefficients of the dimension-six operators.
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Figure 3.9: Ratio of short-distance renormalization effects with and without threshold effect
in the minimal SUSY SU(5) GUT with light vector-like matters. We take n5 = 1, · · · , 4 in
solid lines from top to bottom. The case of the minimal SUSY SU(5) with no light vector-like
matter is shown in dotted line.

Fig. 3.9 shows the ratio of the short-distance renormalization factors in the extra vector-
like matter scenario. The horizontal line and the vertical line indicate the mass scale of the
vector-like matters and the ratio of the short-distance renormalization effect, respectively.
The solid lines correspond to the case that the number of 5+ 5 vector-like matters is set to be
n5 = 1, · · · , 4 from top to bottom without 10 + 10 vector-like matter. In this estimation, we
assume the masses of the heavy multiplets and the GUT scale are set to be 2.0× 1016 GeV. If
the mass (number) of the vector-like superfields is sufficiently light (large), the unified gauge
coupling at the GUT scale becomes larger. However, the additional contribution from the
vector-like matters cancels with the gauge contributions. In fact, the vacuum polarization
ΣX(0) from the vector-like matters is proportional to

ΣX(0)|vector-like ∝
g2

5(N5 + N5)

16π2 M2
X

(
1− ln

MX

µ

)
. (3.54)

Here, we neglect the vector-like mass dependence since we are interested in the case of the
sufficiently small vector-like masses. Therefore, the additional positive contribution from
the vector-like matters cancels with the negative contribution λi|vec. (i = 1, 2) in Eq. (3.48)
when we set MX = µ = 2.0× 1016 GeV.
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Figure 3.10: Partial proton lifetime (p → π0 + e+) in vector-like extension scenario. In
solid (dotted) lines, we take n5 = 0, 1, · · · , 4 with (without) threshold corrections at GUT
scale. Deep gray (gray) region corresponds to experimental excluded region by Super-
Kamiokande (future sensitivity by Hyper-Kamiokande).

In Fig. 3.10, we show the partial proton lifetime (p → π0 + e+) in the minimal SUSY
SU(5) and its vector-like extension. In this evaluation, we assume the masses of the GUT
spectrum except the massive vector superfield are set to be the same mass (2.0× 1016 GeV).
The mass of massive vector superfield is set to be MX = 2.0× 1016 GeV in black lines and
MX = 1.0× 1016 GeV in red lines. The deep gray region is excluded by the present lower
bound on this decay mode at the Super-Kamiokande (τ(p → π0 + e+) > 1.6× 1034 years).
The gray region corresponds to the future sensitivity on this decay mode by the Hyper-
Kamiokande (τ(p → π0 + e+) > 1.0× 1035 years). The unified coupling becomes large at
the GUT scale due to the extra matters, and hence the proton lifetime is suppressed in the
extra matter extensions [99].

Minimal vs. Missing Partner SU(5)

Let us consider now the effect of the additional fields at the GUT scale. The precise calcu-
lation for proton lifetime depends on the unified coupling g5 and the mass spectrum at the
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GUT scale. In particular, as we have shown in Section 2.3, the GUT mass spectrum and the
value of the unified gauge coupling are connected through the threshold corrections to the
gauge couplings at the GUT scale [127, 128]. Thus by requiring gauge coupling unification
we get a constraint on the mass spectrum of the GUT particles through threshold correc-
tions. At the GUT scale, the one-loop matching conditions for gauge couplings are given as
in Eq. (2.35). The threshold corrections ξi for the gauge couplings depend on the details of
the GUT particles spectrum. For the minimal renormalizable SUSY SU(5) GUT, the mass of
color-triplet Higgs multiplets MHC and the combination of the mass parameters M2

X MΣ are
determined by [127, 128]

3
g2

2(µ)
− 2

g2
3(µ)

− 1
g2

1(µ)
=

1
8π2

12
5

ln
MHC

µ
, (3.55)

5
g2

1(µ)
− 3

g2
2(µ)

− 2
g2

3(µ)
=

1
8π2 12 ln

M2
X MΣ

µ3 . (3.56)

The right-hand sides of Eqs. (3.55) and (3.56) are thus determined by the low-energy gauge
couplings and the SUSY mass spectrum. Notice that MX, which enters in the expression
for the D = 6 proton lifetime, cannot be determined since Eq. (3.56) constrains only the
combination M2

X MΣ. We treat the mass of the massive vector superfield as a free parameter
in the following numerical calculation, and we estimate the gauge couplings at the matching
scale (i.e. GUT scale), which we take µ = 2× 1016 GeV, by using the two-loop RGEs for gauge
couplings. After we fix MX, we determine the mass of the color triplet MHC from Eq. (3.55)
and that of the adjoint Higgs MΣ from Eq. (3.56). One of Eqs. (2.35) (for example g1) is then
used to get g5 at the GUT scale.

In the missing-partner SU(5) model, the combinations of the GUT masses are constrained
as [110];

3
g2

2(µ)
− 2

g2
3(µ)

− 1
g2

1(µ)
=

1
8π2

(
12
5

ln
MHC MHC

MH′f
µ

+ 6 ln
26

55

)
, (3.57)

5
g2

1(µ)
− 3

g2
2(µ)

− 2
g2

3(µ)
=

1
8π2

(
12 ln

M2
X MΞ

µ3 + 54 ln
5
4

)
. (3.58)

Here, MHC and MHC
correspond to the mass of the color-triplet Higgs multiplets, while MH′f

denotes the mass of the extra Higgs doublet induced by the breaking of the PQ symmetry.
MΞ is defined as the mass of the component fields (8, 3)0 in Table 2.2. The constant terms
arise from the mass splitting of the component fields of the 75-dimensional Higgs multiplet
as we have shown in Table 2.2.

In the following analysis for the missing-partner model, we determine the combinations
MHC MHC

/MH′f
and M2

X MΞ from Eqs. (3.57)-(3.58). As in the case of the minimal SU(5), for
a given sparticle mass spectrum, MX cannot be determined: Eq. (3.58) gives only a relation
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Table 3.2: Threshold effects on the partial proton decay rate. For simplicity, we assume that
all superparticles are degenerate in mass MS = 1 TeV.

Minimal SU(5) Missing-Partner
MX 1.0× 1016 GeV 2.0× 1016 GeV 1.0× 1016 GeV 2.0× 1016 GeV
A(1)

S 2.070 1.968 1.301 1.269
A(2)

S 2.162 2.059 1.352 1.295
R 1.10 0.994 0.429 0.394
g5 0.697 0.713 0.938 1.198

τ(p→ e+π0) [years] 1.38× 1035 2.23× 1036 1.08× 1035 7.09× 1035

between MX and MΞ. We also define the unified coupling g5 as in the minimal SU(5). For
simplicity, we take the typical mass scale for the color-triplets, MHC = MHC

= 1015 GeV, as
shown in Chapter 2, so that MH′f

is given by Eq. (3.57) at the matching scale µ = MGUT =

2× 1016 GeV.
We list numerical results in the minimal SUSY SU(5) and the missing-partner model in

Table 3.2. Here, we assume that all SUSY particles are degenerate in mass, MS = 1 TeV, for
simplicity. Since proton lifetime strongly depends on the mass of the X boson, we display
the results for two choices of MX = 1.0× 1016 GeV and MX = 2.0× 1016 GeV. By using
the central values for gauge couplings at the EW scale, the mass parameters determined by
Eqs. (3.55)-(3.58) are obtained as follows:

MHC = 6.35× 1015 GeV , (M2
X MΣ24)

1/3 = 1.48× 1016 GeV , (3.59)

for the minimal SUSY SU(5),

MHC MHC

MH′f

= 1.06× 1020 GeV , (M2
X MΞ)

1/3 = 5.43× 1015 GeV , (3.60)

for the missing-partner model. In the missing partner model, we get MH′f
∼ 1010 GeV using

the above constraint and the assumption MHC(HC)
= 1015 GeV. This result is consistent with

the intermediate PQ breaking [111].

The quantities A(i)
S (i = 1, 2) in Table 3.2 show the short-range renormalization factors

with the threshold corrections defined by Eq. (3.45). For each MX, we get the threshold
corrections in the minimal SU(5) model as

λ(1) = −4.94× 10−2 , λ(2) = −4.65× 10−2 , (for MX = 1.0× 1016 GeV) ,

λ(1) = 1.98× 10−3 , λ(2) = 3.26× 10−3 , (for MX = 2.0× 1016 GeV) ,
(3.61)
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and in the missing-partner model as

λ(1) = 0.340 , λ(2) = 0.346 , (for MX = 1.0× 1016 GeV) ,

λ(1) = 0.369 , λ(2) = 0.373 , (for MX = 2.0× 1016 GeV) .
(3.62)

When we estimate the partial proton lifetime in each model, we use the proton decay
matrix elements calculated by the lattice simulation at 2 GeV [41]. Note that the unified
coupling g5 in the missing-partner model is larger than the one in the minimal SU(5). This
is due to the following two reasons:

1. The combination M2
X MΞ in the missing-partner model is slightly smaller than in the

minimal SU(5) due to the constant term present in the right-hand side of Eq. (3.58)
but not of Eq. (3.57).

2. There are many components of 75 contributing to the threshold correction for the
gauge couplings.

In Table 3.2 we see that threshold effects are negligible in the minimal SU(5) model
(R ∼ 1), but suppress the proton decay rate by an approximate factor 0.4 in the missing-
partner model. A much bigger effect comes from the variation of the mass of massive vector
superfield MX, and is unfortunately not under control. This change of the lifetime τ with
MX in Table 3.2 can be understood by the approximate tree level relation τ ∝ (MX/g5)

4.
The threshold corrections from vertex and box contributions depend only on MX and g5

in the context of the SUSY SU(5) GUTs, and these values are of order 10−2 as we have shown
in the previous subsection. Let us consider the model dependence of the threshold effect,
which appears in the vacuum polarization of the massive vector superfield. When the heavy
spectrum is degenerate, the dominant (first term) contribution to the vacuum polarization
in Eq. (3.21) is proportional to the one-loop beta function for the unified gauge coupling. In
the minimal SUSY SU(5), the contribution from the gauge supermultiplets dominates the
vacuum polarization, that is the theory is asymptotically-free. Since there exist many mas-
sive fields in the missing-partner model, the contribution from the chiral supermultiplets
is enhanced, and thus the vacuum polarization is dominated by the chiral supermultiplets
in the model. Therefore, the resulting threshold effects vary among GUT models due to
the relative sign between the contributions from the gauge and the chiral supermultiplets.
Notice that we, of course, include other contributions, such as vertex contributions, box con-
tributions, and vacuum polarizations which arise from interactions including GUT breaking
VEV, though they are subdominant in the missing partner model.

If we estimate the masses of the Higgs multiplets by using Eqs. (3.57)-(3.58) with MX
lying around 1016 GeV, all components can be lighter than the massive vector superfield in
the missing-partner model. The 75-dimensional Higgs multiplet has a number of component
fields with mass different from the matching (GUT) scale, and thus there can be a large
contribution of the threshold correction to the proton lifetime. As a result, the proton decay
rate in the missing-partner model is suppressed about 60% with MX = 2.0× 1016 GeV as we
show in Table 3.2.
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Chapter 4

Conclusion and Discussions

In this thesis we have discussed next-leading order (NLO) corrections to the baryon-number
violating operators in the context of the supersymmetric grand unified theories. In particu-
lar, at the sparticle mass scale and the GUT scale, we have derived the one-loop threshold
corrections to the Wilson coefficients causing p → e+π0 mode. The derivation has been fo-
cused only on the gauge interactions where two-loop RGEs for proton decay operators have
already been studied.

We have considered the specific supersymmetric models which explain the observed
Higgs mass. The split SUSY models have the hierarchical mass spectrum among gauginos
and sfermions. Since the threshold corrections depend on the mass spectrum, it has been
expected that the corrections at the SUSY scale can be significant in the NLO calculations.
In the SUSY SM with extra vector-like matters, the unified coupling is larger, and then the
corrections at the GUT scale has been also expected to become larger.

For the split SUSY models, in the limit of the degenerate sfermions, there is not so much
correction to the baryon-number violating operators at the SUSY scale against our expecta-
tion. In fact, the correction to proton decay rate is a few percents with degenerate sfermions.
However, it might be possible to enhance the correction if the hierarchical sfermion masses
are realized. While we have focused on the split SUSY model in the numerical simulation,
the analytic formula Eq. (3.11) is applicable to the generic SUSY spectrum. Furthermore, it
is straightforward to extend our formula to the other operators which generate four-Fermi
interactions, such as flavor-changing neutral currents.

We have also investigated the threshold effects on the proton lifetime in the minimal
SUSY SU(5) GUT with extra vector-like matters. We have found that the threshold correc-
tions give tiny effects in spite of the large unified coupling. This is because there is a cancel-
lation between vacuum polarizations of the massive vector superfield from extra vector-like
superfields and gauge supermultiplets.

We have also studied the effects from the higher-dimensional representations at the GUT
scale. In this thesis, we have focused on the specific GUT model called the missing-partner
model. In this model, the Higgs sector effectively contains the 75-dimensional Higgs mul-
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tiplet and two pairs of 5 + 5. We have determined the mass spectrum at the GUT scale
using the low-energy gauge coupling constants with fixed some mass parameters such as
the mass of the massive vector superfield and the color-triplet chiral superfields. We have
also determined the unified gauge coupling including threshold correction, so that the mass
differences among the components of 75-dimensional Higgs make the coupling large. As a
result, due to the small masses and the large coupling, the contributions of all these multi-
plets sum up to a correction of about 60% to the proton lifetime.

In this study, we have not included the corrections from Yukawa coupling. The reasons
are the following: no two-loop RGE analysis with Yukawa couplings for the baryon-number
violating processes is available, and the effect is not expected to be sizable due to the small-
ness of Yukawa couplings except the top Yukawa coupling.

Moreover, we have not considered the effect of higher-dimensional operators with the
Planck-scale suppression. In the missing-partner model, we assume 50 + 50 pairs have the
mass around the Planck scale. There might be the Planck-suppressed operators in general,
so that they would affect the gauge couplings and the mass spectrum about a few percent at
the GUT scale. The corrections strongly depend on the couplings of the higher-dimensional
operators. However, since the UV description of the supersymmetric grand unified theories
is not available, we cannot include the correct effects from the Planck-scale physics so far.

We have focused attention only on the SUSY SU(5) GUT models in this study. We ex-
pect the extension to the other unification group such as SO(10) and E6 is straightforward.
In particular, we give the explicit formulae of the supergraph calculations in Appendix E.
Hence, what to do is decomposing the GUT interactions and calculating the numerical factor
for each supergraphs.

Last but not least, we notice remaining uncertainties in the precise determination of the
proton lifetime. One of them is the hadron matrix elements. The matrix elements of p →
π0e+ is evaluated with lattice QCD, and they have at present around 30% uncertainty [41],
and below 20% uncertainty with improved statistics [130]. We hope that this uncertainty
will be reduced in future studies.

Another is the next-to-next-to leading order (NNLO) calculations. There exists the ad-
ditional loop suppression in the NNLO calculations such as three-loop RGEs and two-loop
threshold corrections. The loop factor at the GUT scale, that is g2

5(MGUT)/16π2, becomes
3.3× 10−3 to 1.5× 10−2 corresponding to the number of vector-like matters being N5 = 0
to N5 = 4. The loop factor in the missing partner model is 9.1 × 10−2 using the unified
coupling g5 = 1.198 as shown in Table 3.2. Thus, the NNLO calculations should be much
smaller than the uncertainty of the matrix elements with lattice QCD.
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Appendix A

Convention and Notations

Convention

We use the metric on the four-dimensional Minkowski spacetime which is given by

ηµν = diag(+,−,−,−) . (A.1)

Here, Greek indices ν, ν run (0, 1, 2, 3) with µ = 0 being the time coordinate. We also use the
definition of the totally anti-symmetric tensor as ϵ0123 = 1.

Angular momentum operators Ji and boost operators Ki are given by

Ji ≡ ϵijkMjk ,

Ki ≡Mi0 = −M0i ,
(A.2)

whereMµν is the generator of the Lorentz group. Commutation relations of them are given
by

[Ji, Jj] = iϵijk Jk ,

[Ji, Kj] = iϵijkKk ,

[Ki, Kj] = −iϵijk Jk .

(A.3)

Now we define the following spins

Ai ≡
1
2
(Ji + iKi) , Bi ≡

1
2
(Ji − iKi) . (A.4)

These spins, of course, satisfy A∗ = B and the following commutation relations.

[Ai, Aj] = iϵijk Ak ,

[Bi, Bj] = iϵijkBk ,

[Ai, Bj] = 0 .

(A.5)
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APPENDIX A. CONVENTION AND NOTATIONS

Thus, A and B spins satisfy the SU(2) Lie algebra. The arbitrary finite-dimensional repre-
sentation of the Lorentz group is characterized by the size of spins A and B. The dimension
of the representation space is (2A + 1)(2B + 1). The fields corresponding to the simplest
representation are SL(2, C)-spinors (A, B) = (1/2, 0), (0, 1/2).

SL(2, C)-spinors are denoted by

χα , χ†
α̇ . (A.6)

We refer to χα(1/2, 0) as the left-handed spinor, whereas we do to χ†
α̇(0, 1/2) as the right-

handed spinor. Since A and B are complex conjugates of each other, we write

(χα)
† = χ†

α̇ . (A.7)

Hereafter, we use the short-hand notation for spinor contractions

χη = χαηα , χ†η† = χ†
α̇η†α̇ . (A.8)

We use the totally anti-symmetric tensor ϵαβ to raise lower indices of SL(2, C)-spinors, and
vice versa. Since ϵαβ is an invariant tensor of SL(2, C), we define the components as follows
without distinction between dotted and un-dotted indices.

ϵ12 = ϵ21 = 1 , ϵ12 = ϵ21 = −1 , ϵ11 = ϵ22 = 0 . (A.9)

The Grassmann derivative and the Grassmann integral measure are defined as:

∂

∂θα
θβ = δ

β
α ,

∂

∂θ†
α̇

θ†
β̇
= δα̇

β̇
, (A.10)

d2θ = −1
4

dθαdθβϵαβ , d2θ† = −1
4

dθ†
α̇dθ†

β̇
ϵα̇β̇ . (A.11)

Then, the integral of the products of the Grassmannian coordinate θθ ≡ θαθα, θ†α̇θ†
α̇ are

obtained as the following form;∫
d2θ(θθ) = 1 ,

∫
d2θ†(θ†θ†) = 1 . (A.12)

Spinor Relations

Gamma matrices in chiral representation are given by

γµ ≡
(

0 σ
µ

αβ̇

σµα̇β 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−δ

β
α 0

0 δα̇
β̇

)
. (A.13)
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Chiral projection operators are defined as
PL ≡

1
2
(1− γ5) =

(
δ

β
α 0
0 0

)
PR ≡

1
2
(1 + γ5) =

(
0 0
0 δα̇

β̇

) . (A.14)

Now, we divide Dirac spinor Ψ(x) into two mass-degenerate, opposite charged Weyl spinors
χα(x), ηα(x) as:

Ψ(x) =
(

χα(x)
η†α̇(x)

)
. (A.15)

The Hermitian conjugate of Weyl-spinor is defined as:

(ψα)
† = (ψ†)α̇ ≡ ψ†

α̇ , (ψ†α̇)† = ψα . (A.16)

These relation means that the Hermite conjugate of the left-handed Weyl spinor is the right-
handed Weyl spinor, and vice versa. Then, we have

Ψ(x) = Ψ†(x)A = (ηβ, χ†
β̇
) , ΨC(x) = CΨT

(x) =
(

ηα

χ†α̇

)
. (A.17)

Then, we also have

ΨL(x) = PLΨ(x) =
(

χα(x)
0

)
, ΨR(x) = PRΨ(x) =

(
0

η†α̇(x)

)
. (A.18)

We are able to divide all of the Dirac bilinear forms into the bilinear forms in terms of the
Weyl spinors:

ΨiPLΨj = ηiχj , ΨiPRΨj = χ†iη†
j ,

ΨiPLΨC
j = ηiηj , ΨiPRΨC

j = χ†iχ†
j ,

ΨiCPLΨj = χiχj , ΨiCPRΨj = η†iη†
j ,

(A.19)

ΨiγµPLΨj = χ†iσµχj , ΨiγµPRΨj = ηiσµη†
j . (A.20)

Thus, we have the transformation between the bilinear forms of the Dirac spinor and the
Weyl spinors:

ΨiΨj = ηiχj + χ†iη†
j , Ψiγ5Ψj = −ηiχj + χ†iη†

j ,

ΨiγµΨj = χ†iσµχj + ηiσµη†
j , Ψiγµγ5Ψj = −χ†iσµχj + ηiσµη†

j .
(A.21)
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APPENDIX A. CONVENTION AND NOTATIONS

We obtain the following relations by using formulae for the Pauli matrices.

(χ†iσµχj)(η
kσµη†

l ) = χ†i
α̇ (σ

µ)α̇αχjαηkβ(σµ)ββ̇(η
†
l )

β̇

= 2(χ†i
α̇ η†α̇

l )(χjαηkα) ,

(χ†iσµχj)(χ
k†σµχl) = 2(ϵα̇β̇χi†

α̇ χ†k
β̇
)(ϵαβχjαχlβ) ,

(ηiσµη†
j )(η

kσµη†
l ) = 2(ϵα̇β̇(η

†
j )

α̇(η†
l )

β̇)(ϵαβηiαηkβ) .

(A.22)

In terms of Dirac spinor relation, we have

(Ψi
γµPLΨj)(Ψ

k
γµPLΨl) = 2(ΨkPRΨiC)(ΨC

jPLΨl) ,

= 2(ΨiPRΨkC)(ΨC
lPLΨj)

(Ψi
γµPRΨj)(Ψ

k
γµPLΨl) = 2(ΨiPRΨl)(Ψ

kPLΨj) .

(A.23)

Group Theoretical Constants

In this section, we summarize group theoretical constants. We consider both a simple group
and a product group. A generator acting on a field Φ is denoted by TA with A running over
the number of generators. The Dynkin index I(Φ) and the quadratic Casimir invariant C(Φ)
are defined by

∑
A

TA
a TA

a = Ca(Φ)1 ,

tr(TA
a TB

a ) = Ia(Φ)δAB .
(A.24)

Here, subscript a denotes the label of the group G: a = G if G is simple and a runs over all
simple groups Gi if G is not simple and G = G1 × G2 × · · · × Gn. Through this thesis, by
convention, the Dynkin index of fundamental representations is normalized as I = 1/2 for
an SU(N) group. In the text, we often use the following notation for the quadratic Casimir
invariant of the adjoint representation,

fAMN fBMN = C(a)δAB . (A.25)

For the SM gauge group and the unified group, we also use the following shorthand nota-
tions in the text. The subscripts i = 1, 2, and 3 of Ii(Φ) and Ci(Φ) respectively represent the
GUT-normalized U(1)Y, SU(2)L, and SU(3)C. I5(Φ) and C5(Φ) respectively represent the
Dynkin index and the quadratic Casimir invariant for a field Φ in an irreducible representa-
tion of SU(5).
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Appendix B

Input Parameters

In this appendix, we present input values for numerical simulations.

B.1 Electroweak Scale

First, the SM gauge couplings at the EW scale are shown in Table B.1. These couplings are
estimated in the MS scheme. The SU(2)L and U(1)Y couplings, g and gY, are given as

g2(mZ)

4π
=

αEM(mZ)

sin2 θW(mZ)
,

g2
Y(mZ)

4π
=

αEM(mZ)

1− sin2 θW(mZ)
. (B.1)

The relations between MS and DR couplings will be shown later.
We evaluate the Yukawa coupling matrices at the EW scale by using the quark and lepton

mass matrices as follows,

v√
2

Yu = Mu ,
v√
2

YdUCKM = Md ,
v√
2

Ye = Me . (B.2)

Here, the diagonal elements of the quark and lepton mass matrices Mu, Md, and Me are listed
in Table B.2. In Table B.2, the light quark masses, mu, md, and ms, are MS masses at 2 GeV.
The charm quark mass mc and bottom quark mass mb are estimated at each mass scale as
MS masses. We treat the top quark mass mt as a pole mass. We also show the transformation
from the MS and the pole masses to DR masses, and show the short-range renormalization
factor for quark masses later. UCKM is the CKM matrix parameterized as

UCKM =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 , (B.3)
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APPENDIX B. INPUT PARAMETERS

Table B.1: Electroweak Parameters

Symbol Value

Fine structure constant α−1
EM(mZ) 127.940 [57]

Weak angle sin2 θW(mZ) 0.23126± 0.0008 [57]

Strong coupling constant αS(mZ) 0.118± 0.007 [57]

Z boson mass mZ 91.1876± 0.0021 GeV [57]

W boson mass mW 80.385± 0.015 GeV [57]

Higgs boson mass mh 125.09± 0.21 (stat.)± 0.11 (syst.) GeV [26]

where cij = cos θij, sij = sin θij, and the CKM phase δ. In our calculation, we used the
Wolfenstein parameterization [131].

s12 ≡ λ, s23 ≡ Aλ2, s13eiδ ≡ Aλ3(ρ̄ + iη̄)
√

1− A2λ4
√

1− λ2[1− A2λ4(ρ̄ + iη̄)]
. (B.4)

These values have been measured by various experiments.

λ = 0.22535± 0.00065, A = 0.811+0.022
−0.012,

ρ̄ = 0.131+0.026
−0.013, η̄ = 0.345+0.013

−0.014.
(B.5)

Scheme Transformations

The gauge couplings in MS and DR schemes relate to each other. This relation is easily de-
rived from the finite correction to gauge couplings with the unification requirement. Indeed,
the finite corrections in MS and DR differ in only mass-independent term. The formula is
given as follows [132]:

1

αDR
i (µ)

=
1

αMS
i (µ)

− Ci

12π
, (B.6)

where µ denotes the renormalization scale and

(C1, C2, C3) = (0, 2, 3) . (B.7)

For quark masses, we convert MS masses into DR ones since we use the DR renormalization
scheme in the supersymmetric models. By comparing the pole masses and the running
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B.1. ELECTROWEAK SCALE

Table B.2: Masses of Quarks and Leptons

Symbols Values
mu(2 GeV)MS 2.3+0.7

−0.5 MeV
md(2 GeV)MS 4.8+0.7

−0.3 MeV
me 0.510998928(11) MeV

mc(mc)MS 1.275± 0.025 GeV
ms(2 GeV)MS 95.0± 5 MeV

mµ 105.6583715(35) MeV

mt 173.07± 0.6± 0.8 GeV
mb(mb)

MS 4.18± 0.03 GeV
mτ 1.77682(16) GeV

masses (in the MS and DR renormalization schemes), and then we get the DR mass for
quarks at one-loop level in terms of MS couplings and masses [133],

mDR
i (µ) = mMS

i (µ)

(
1−

αMS
S (µ)

3π

)
. (B.8)

The one-loop scheme transformation between the pole mass and the DR mass for top quark
is given by [134]

mpole
t = mDR

t (mDR
t )

(
1− 5

3π
αDR

S (mDR
t )

)
. (B.9)

Short-range Renormalization Factor

Below the EW scale, the quark mass mq develops at the one-loop level as follows

mq(µ) =

(
αS(µ)

αS(µ0)

)−4/bS

mq(µ0) , (B.10)

where µ and µ0 are the renormalization scales, and bS is the coefficient of the β-function
defined as

bS = −
(

11− 2
3

Nq

)
. (B.11)

Here, Nq is the number of quarks.
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Appendix C

Supergraph and Feynman Rule on
Superspace

In this appendix, external superfields have the external momenta and fermionic coordinates
θ ≡ (θα, θ†

α̇). If external superfields have the momenta (the size of the momenta is denoted
as p) which are the same (opposite) direction as the chirality arrow, we denote the external
chiral and anti-chiral superfields as Φ(p, θ) and Φ†(p, θ) (Φ(−p, θ) and Φ†(−p, θ)), respec-
tively.

C.1 D-Algebra

We will give the formulae for the super-covariant derivatives, which are called “D-algebra”.
By using these formulae, we obtain not the full effective action but “the effective Kähler
potential” in this thesis. In momentum space, the anti-commutation relations are given as
follows: {

Dα(p) ,Dβ(p)
}
= 0 ,

{
Dα̇(p) ,D β̇(p)

}
= 0 ,{

Dα(p) ,D β̇(p)
}
= −2σ

µ

αβ̇
pµ ,

{
Dα(p) ,D β̇

(p)
}

= −2σ
β̇α
µ pµ ,

(C.1)

where we substitute −ipµ for the usual derivative ∂µ in momentum space. Now, we do not
write down the momentum-dependence of the super-covariant derivative D(p) explicitly
below. We use pαα̇ = (σµ)αα̇ pµ and pα̇α = (σµ)α̇α pµ as shorthand notation. δ denotes the
delta function for the superspace coordinates.

δ ≡ δ(θ) = θ2θ†2 . (C.2)

Now we find easily the formulae for simple D-algebra:

δFδ = 0 , (C.3)
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C.1. D-ALGEBRA

with F = 1,Dα,D2,DαDα̇,DαD2
, and these Hermite conjugates. This is because the fermionic

delta function has two θs and two θ†s. Projection operators are defined as follows:

P1 =
1

16
D2D2

p2 , P2 =
1

16
D2D2

p2 ,

P+ =
1
4
D2√
−p2

, P− =
1
4
D2√
−p2

, PT = −1
8
DαD2Dα

p2 .

(C.4)

Formulae with four derivatives

There are non-zero contributions from the D-algebra with the scalar-type index, which means
that all of the spinor indices are contracted.

δD2D2
δ = δD2D2δ = δD β̇D

2D β̇
δ = δDαD2Dαδ = 16δ . (C.5)

We also obtain the epsilon-tensor type contributions: at first, using the following relation

DαDβ =
1
2

ϵαβD2 , Dα̇D β̇ =
1
2

ϵα̇β̇D
2

, (C.6)

we obtain

δDαD
2Dβδ = δDαDβD

2
δ = δD2DαDβδ = 8ϵαβδ ,

δDα̇D2D β̇δ = δDα̇D β̇D
2δ = δD2Dα̇D β̇δ = 8ϵα̇β̇δ .

(C.7)

Formulae with five derivatives

Using the anti-commutation relation, we obtain

Dα̇D2 = 4pαα̇Dα +D2Dα̇ , (C.8)

then,

Dα̇D2D2
= 4pαα̇DαD2

. (C.9)

Formulae with six derivatives

We find

δDαD β̇D2D2
δ = 32pβ̇αδ , δD β̇DαD2D2δ = 32pβ̇αδ , (C.10)

and δDαD2DβD2
δ = 0. Futhermore,

D2
(p)D2(p)D2

(p) = 16p2D2
(p) , D2(p)D2

(p)D2(p) = 16p2D2(p) . (C.11)
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External Superfields with Covariant Derivatives

In a full quantum action, there are terms with the covariant derivatives acting on external
fields. To obtain the effective Kähler potential, we have to divide them into the terms with
and without covariant derivatives. The terms with covariant derivatives are vanished in the
limit of DαΦ = 0 and D β̇Φ† = 0. Here, we give

DαD β̇
(Φ(p)Φ†(q)) = −2qβ̇αΦ(p)Φ†(q) +DαΦ(p)D β̇

Φ†(q) ,

D β̇Dα(Φ(p)Φ†(q)) = −2pβ̇αΦ(p)Φ†(q) +D β̇
Φ†(q)DαΦ(p) .

(C.12)

The last terms correspond to the auxiliary potential. The products of external superfields
with projection operators are divided as follows.

D2D2(Φ(p)Φ(q)) = 16(q + p)2Φ(q)Φ(p) ,

D2D2
(Φ†(p)Φ†(q)) = 16(q + p)2Φ†(q)Φ†(p) ,

D2D2(Φ(p)Φ†(q)) = 16p2Φ(p)Φ†(q) + 8pαβ̇D
αΦ(p)D β̇

Φ†(q) +D2Φ(p)D2
Φ†(q) .

(C.13)

In order to obtain the last line, we use the relation D β̇D2Φ(p) = 4pαβ̇DαΦ(p).
For the product of chiral and antichiral superfields projected on the transverse mode, we

also decomposed it as the following form:

DαD2Dα[Φ(p)Φ†(q)]

= −2(q− p)αβ̇D
αΦ(p)D β̇

Φ†(q)− 8p · qΦ(p)Φ†(q) +D2Φ(p)D2
Φ†(q) .

(C.14)

Here, we use PTΦ = 0 (PTΦ† = 0). Indeed, the chiral superfield projected on the transverse
mode is exactly zero due to the property of the projection operator, P1 + P2 + PT = 1. The
dot product is defined as p · q = pµqµ.

We also have the gauge interactions among chiral, anti-chiral, and vector superfields.
From these interactions, we get the quantum action in which superspace covariant deriva-
tives act on the vector superfield. In terms of the effective Kähler potential, we must neglect
the terms vanished as DαΦ = 0 and D β̇Φ† = 0.

∫
d4θΦ†(−p)Φ(k)D β̇DαV(q)

=
∫

d4θ

[
−2pβ̇αΦ†(−p)Φ(k) +D β̇

Φ†(−p)DαΦ(k)
]

V(q) ,
(C.15)

∫
d4θΦ†(−p)Φ(k)DαD β̇V(q)

=
∫

d4θ

[
−2kβ̇αΦ†(−p)Φ(k) +DαΦ(k)D β̇

Φ†(−p)
]

V(q) .
(C.16)
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The terms with projection operators acting on the vector superfield are decomposed as fol-
lows.∫

d4θΦ†(−p)Φ(k)
1

16
D2D2V(q)

=
1
16

∫
d4θ

[
D2

Φ†(−p)D2Φ(k) + 2D β̇Φ†(−p)D β̇D2Φ(k) + 16k2Φ†(−p)Φ(k)
]

V(q) ,∫
d4θΦ†(−p)Φ(k)

1
16
D2D2V(q)

=
1
16

∫
d4θ

[
D2

Φ†(−p)D2Φ(k) + 2DαΦ(k)DαD
2
Φ†(−p) + 16p2Φ†(−p)Φ(k)

]
V(q) ,∫

d4θΦ†(−p)Φ(k)
(
−1

8
DαD2Dα

)
V(q)

=
1
2
(k− p)β̇α

∫
d4θD β̇Φ†(−p)DαΦ(k)V(q) + (q2 − p2 − k2)

∫
d4θΦ†(−p)Φ(k)V(q) .

(C.17)

C.2 Feynman Rule on Superspace

Here, we summarize the Feynman rule on the superspace. First, we give the Feynman-rule
on the coordinate space for the generic super-Yang-Mills with matter chiral superfield.∗

1. Propagator:

(a) Chiral Superfields with mass m

ΦΦ :
m
4

iD2

□(□+ m2)
δ(8)(z− z′)

Φ†Φ† :
m
4

iD2

□(□+ m2)
δ(8)(z− z′)

ΦΦ† : − i
(□+ m2)

δ(8)(z− z′)

(C.18)

(b) Vector Superfields

VV :
1
2

(
i

□+ m2 PT +
i

□+ m2/α
(P1 + P2)

)
δ(8)(z− z′) (C.19)

with the gauge parameter α. If we take the Fermi-Feynman gauge (α = 1),

VV :
1
2

i
□+ m2 δ(8)(z− z′) (C.20)

∗See Refs. [56, 135] for details of supergraphs.
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Here, superspace coordinates are denoted by z = (x, θ, θ†) and z′ = (x′, θ′, θ′†). We
prepare a propagator of massive vector superfields for spontaneously broken gauge
theories.

2. Vertices: In addition to the vertex rule read from the Lagrangian directly as the usual
Feynman-rule, we act−D2

/4 (−D2/4) on the corresponding propagators for each chi-
ral (anti-chiral) line leaving from vertices. For the superpotential vertices (purely chiral
or anti-chiral vertices), we omit one−D2

/4 or−D2/4 among the corresponding prop-
agators.

3. Carrying out integral for fermionic coordinates
∫

d4θ at each vertices.

4. Finally, multiplying the symmetry factor.

In the momentum space, the Feynman rule on the superspace is given by the following
procedure. We substitute −ipµ for the spacetime derivative ∂µ.

1. Propagators:

(a) Chiral Superfields

ΦΦ :
m
4

iD2

p2(p2 −m2)
δ(4)(θ − θ′) ,

Φ†Φ† :
m
4

iD2

p2(p2 −m2)
δ(4)(θ − θ′) ,

ΦΦ† :
i

p2 −m2 δ(4)(θ − θ′) .

(C.21)

(b) Vector Superfields

VV : − 1
2

(
i

p2 −m2 PT +
i

p2 −m2/α
(P1 + P2)

)
δ(4)(θ − θ′) . (C.22)

For the Fermi-Feynman gauge (α = 1),

VV : − 1
2

i
p2 −m2 δ(4)(θ − θ′) . (C.23)

2. Carrying out the fermionic integrals
∫

d4θ at each vertices, the loop integrals at each
loops , and multiplying (2π)4δ(∑ kext) for each external lines with external momentum
kext.

73



C.2. FEYNMAN RULE ON SUPERSPACE

3. Calculating one-particle irreducible graphs in order to obtain the effective action, and
multiplying ∫ d4ki

(2π)4 Ψ(ki) , (C.24)

for the external superfields Ψ with external momentum ki.

Of course, the rule for vertices is prescribed in the same way as the coordinate Feynman-rule,
and the symmetry factor is also multiplied.

74



Appendix D

Decomposition of SU(5) Interactions

D.1 Interactions of Vector Superfields

In Super-Yang-Mills (SYM) theories, the renormalizable Lagrangian is written as

LSYM =
1

8g2 tr
∫

d2θWαWα + h.c. , (D.1)

where the field strength chiral superfield Wα is given in Eq. (1.19). “tr” represents a trace
over the gauge indices. The Lagrangian is expanded in the vector superfield V as

1
8g2 tr

∫
d2θWαWα =− 1

8
tr
∫

d4θ
[
−VDαD2DαV + 2gVDαD2

[V,DαV]

+g2[V,DαV]D2
[V,DαV] +

4g2

3
DαVD2

[V, [V,DαV]] + · · ·
]

.
(D.2)

The decomposition of the SU(5) vector superfield V5 is given by Eq. (2.7). As mentioned
in the text, we denote SU(3)C, SU(2)L, and U(1)Y vector superfields in the MSSM with G, W,
and B, again. The kinetic terms of the vector superfields in the SU(5) GUTs are given into
the following form;

LVV = 2 tr
∫

d4θ G□PTG + 2 tr
∫

d4θ W□PTW +
∫

d4θ B□PTB + 2
∫

d4θ X†□PTX , (D.3)

where X denotes the massive vector superfield associated with the broken SU(5) generators.
Here, PT(≡ DαD2Dα/(8□)) is the projection operator to the transverse mode (P2

T = PT).
From the second term of Eq. (D.2), the three-point interaction terms between X and

MSSM vector superfields are obtained as

LX-3 pt =
∫

d4θ

[
δs

r(T
a)

β
α(Ka

XG)
rα
sβ + (ta)s

rδ
β
α (Ka

XW)rα
sβ +

5
2
√

15
δs

rδ
β
α (KXB)

rα
sβ

]
, (D.4)
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where

(Ka
XV)

rα
sβ ≡

g5

4

[
Xr

β(D
2DX†)α

sDVa + Va(D2DX)r
β(DX†)α

s + X†α
s (D

2DVa)DXr
β

−Xr
β(D

2DVa)(DX†)α
s −Va(D2DX†)α

sDXr
β − X†α

s (D
2DX)r

βDVa
]

.
(D.5)

Here, spinor indices of covariant derivatives D and D are contracted like α
α or α̇

α̇. The four-
point self interaction of X is given as

LX-4 pt =−
g2

5
48

∫
d4θ

[
(D2DX†α

r )(Xr
βX†β

s (DX)s
α − 2Xr

β(DX†)
β
s Xs

α + (DX)r
βX†β

s Xs
α)

+ (D2DXr
α)(X†α

s Xs
β(DX†)

β
r − 2X†α

s (DX)s
βX†β

r + (DX†)α
s Xs

βX†β
r )
]

.
(D.6)

D.2 Vector-Ghost Interactions

The Lagrangian for the massless Fadeev-Popov ghost chiral superfields, which are denoted
by b and c, is given by

LFP = 2 tr
∫

d4θ(b + b†)LgV

[
(c + c†) + coth(LgV)(c− c†)

]
, (D.7)

where LAB is the Lie derivative (LAB ≡ [A, B]). Therefore, the kinetic terms for ghost fields
in the SU(5) GUTs are obtained as

Lghost =2
∫

d4θ
[
tr(b†

3c3 − b3c†
3) + tr(b†

2c2 − b2c†
2)
]
+
∫

d4θ(b†
1c1 − b1c†

1)

+
∫

d4θ
[
(b†

XcX − bXc†
X) + (b†

X† cX† − bX† c†
X†)
]

,
(D.8)

where the ghost multiplets are decomposed in a similar way to the gauge multiplets as

b =

(
b3 − 2√

30
b1

1√
2
bX

1√
2
bX† b2 +

3√
30

b1

)
, c =

(
c3 − 2√

30
c1

1√
2
cX

1√
2
cX† c2 +

3√
30

c1

)
. (D.9)

After spontaneously breaking of the GUT group by the adjoint Higgs chiral superfield,
there exist kinetic mixing terms between X and the Nambu-Goldstone chiral superfields
Σ(3,2) and Σ(3∗,2). By using the supersymmetric Rξ-gauge [136], we remove the kinetic mix-
ing terms, and we find the mass terms for the ghost chiral superfields [136] as:

Lghost mass =
∫

d4θ

[
(bX + b†

X)
M2

X
ξ□ (cX − c†

X) + (bX† + b†
X†)

M2
X

ξ□ (cX† − c†
X†)

]
. (D.10)

76
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We note that the terms such as bXcX and b†
Xc†

X vanish by the superspace integral since these
are chiral (or anti-chiral) superfields. Then, the propagator for massive ghost superfields is
modified as

∆bc =
i

k2 δ4(θ1 − θ2)→
i

k2
1

1− M2
X

ξk2

δ4(θ1 − θ2) . (D.11)

In the evaluation of the self energy of X, we need interaction terms for X and the massive
ghosts. In general, three-point and four-point interaction terms of ghost superfields and
vector superfields are obtained from Eq. (D.7) as follows,

LbVc = tr
∫

d4θ

{
2g (b + b†)

[
V, (c + c†)

]
+

2g2

3
(b + b†)[V, [V, (c− c†)]] +O(V3)

}
.

(D.12)

Then, the interaction terms between X and the ghosts are given by:

LbXc =
∫

d4θ

[
δs

r(T
a)

β
α(Ka

bcG)
rα
sβ − (ta)s

rδ
β
α (Ka

bcW)rα
sβ −

5
2
√

15
δs

rδ
β
α (KbcB)

rα
sβ

]
, (D.13)

and

LbX2c =−
g2

5
6

∫
d4θ(δ

βδ
αγδtr

su + δ
δβ
αγδrt

su)X†α
r Xs

β

×
[
(bX†)

γ
t (c

†
X†)

u
δ − (b†

X)
γ
t (cX)

u
δ − (b†

X†)
u
δ (cX†)

γ
t + (bX)

u
δ (c

†
X)

γ
t

]
.

(D.14)

Here, we define δ
βδ
αγ ≡ δ

β
α δδ

γ and δtr
su ≡ δt

sδ
r
u. In the three-point interactions, we define the

term (Ka
bcV)

rα
sβ as:

(Ka
bcV)

rα
sβ ≡ ((bX + bX†)r

βX†α
s − Xr

β(bX† + b†
X)

α
s )(cV + c†

V)
a

+ (bV + b†
V)

a(Xr
β(cX† + c†

X)
α
s − (cX + c†

X†)
r
βX†α

s ) .
(D.15)

D.3 Gauge Interactions of Matter Superfields

Now, we summarize the gauge interactions of the matter and Higgs multiplets in SUSY
SU(5) GUTs. The renormalizable Kähler potential in the SU(5) GUTs is given as:

K = Φ†A(e−2g5V5)B
AΦB + Ψ†

AB(e
2g5V5)A

C (e
2g5V5)B

DΨCD

+ 2Σ†A
B (e−2g5V5)C

A(e
2g5V5)B

DΣD
C + H†A

5 (e−2g5V5)B
AH5B + H†

5A(e
2g5V5)A

B HB
5 .

(D.16)
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The three-point gauge interaction of the 5 representation matter field Φ is given as

KΦ†VΦ =− g5D†
(

2G− 2√
15

B
)

D + g5L†
(

2W − 3√
15

B
)

L

−
√

2g5

[
D†

(X · L) + h.c.
]

.
(D.17)

For the four-point vertices, we only use the interactions which include only one X,

KΦ†V2Φ ∋
√

2g2
5

(
D†G(X · L) + 1√

60
D†B(X · L) + D†

(WX · L)
)
+ h.c. . (D.18)

Here, (A · B) ≡ ϵrs ArBs. We also obtain the relevant gauge interactions from the 10 repre-
sentation matter field Ψ,

KΨ†VΨ =− g5U†
(

2G +
4√
15

B
)

U + g5Q†
(

2G + 2W +
1√
15

B
)

Q

+ g5
6√
15

E†BE +
√

2g5

[
[Q†XU]− (Q† · X†)E + h.c.

]
,

(D.19)

KΨ†V2Ψ ∋
√

2g2
5

[
[(GQ†)XU]− [Q†X(GU)]− 3√

60
B[Q†XU] + [(WQ†)XU]

+E†
(
(X · GQ) + (X ·WQ) +

7√
60

(X · BQ)

)]
+ h.c. ,

(D.20)

where [ABC] ≡ ϵαβγ AαBβCγ or ϵαβγ AαBβCγ.
There are also the three- and four-point interactions of X with Higgs multiplets. One of

them comes from the interaction of the anti-fundamental Higgs superfield H = (HC, Hd),

K
H†XH

=−
√

2g5

[
H†

C(X · Hd) + h.c.
]

+ g2
5

[√
2
(

H†
CG(X · Hd) +

1
2
√

15
H†

CB(X · Hd) + H†
C(WX · Hd)

)
+ h.c.

+ H†α
C Xr

αX†β
r HCβ + (X† · H†

d)(X · Hd)
]

.

(D.21)

Another one comes from the fundamental Higgs superfield H = (HC, Hu),

KH†XH =
√

2g5

[
H†

uXHC + h.c.
]

+ g2
5

[√
2
(

H†
uXGHC +

1
2
√

15
H†

uXBHC + H†
uWXHC

)
+ h.c.

+ H†
CαX†α

r Xr
βHβ

C + H†
urXr

αX†α
s Hs

u

]
.

(D.22)
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The adjoint Higgs superfield is decomposed as

Σ =

 Σ8 −
2√
60

Σ24
1√
2

Σ(3,2)

1√
2

Σ(3∗,2) Σ3 +
3√
60

Σ24

 . (D.23)

In our calculation, we need the interaction terms of X with the GUT-breaking Higgs
superfield,

KΣ†XΣ =− 2g5

[
Σ†
(3∗,2)XΣ8 − Σ†

8XΣ(3,2)

]
− 2g5

[
Σ†

3XΣ(3,2) − Σ†
(3∗,2)XΣ3

]
− 5√

15
g5

[
Σ†
(3∗,2)XΣ24 − Σ†

24XΣ(3,2)

]
+ h.c. ,

(D.24)

KΣ†X†XΣ =g2
5

{
2X†(Σ†

8Σ8 + Σ8Σ†
8)X + 2X†(Σ†

3Σ3 + Σ3Σ†
3)X +

5
3

X†Σ†
24Σ24X

+
10√
15

(Σ†
24X†XΣ8 − Σ†

24X†XΣ3 + h.c.)

− 2
(

2Σ†
8X†XΣ3 + (Σ†

(3∗,2))
α
r Xs

αXr
β(Σ(3,2))

β
s + h.c.

)
+(δru

st δ
αγ
δβ + δru

ts δ
αγ
βδ )Xt

γX†δ
u

(
(Σ†

(3,2))
s
α(Σ(3,2))

β
r + (Σ†

(3∗,2))
β
r (Σ(3∗,2))

s
α

)}
.

(D.25)

Finally, we consider the interactions of X with the GUT-breaking Higgs superfields. We
have used these interactions in the calculation of ai in Table 3.1.

Kv24X = −
√

2g5MX

{
Σ(3,2)

[
GX−WX +

5√
60

BX
]

+Σ(3∗,2)

[
GX† −WX† +

5√
60

BX†
]}

+ h.c. .
(D.26)

Here, the mass of the extra vector superfield X and X† is MX = 5
√

2g5v24.

In the missing partner model, 75 representation Ξ[AB]
[CD]

breaks SU(5) into the SM gauge

group. For a 75 representation Ξ[AB]
[CD]

, the Kähler potential is given by Eq. (2.17). The GUT-

breaking VEV of Ξ(AB)
(CD)

is given in Eq. (2.16). The extra vector superfield becomes massive

with MX = 2
√

6g5v75 after we substitute the VEV for Ξ and Ξ†, while the interaction terms
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proportional to the VEV are

Kv75X = g5MX

{
−X†X(ϕ8 + ϕ†

8) +
4√
3

X†X(ϕ7 + ϕ†
7) +

√
6X†X(ϕ9 + ϕ†

9)

}
−
√

2g5MX

{
−G(X · (ϕ3 + ϕ†

4)) + X(W · (ϕ3 + ϕ†
4)) +

5√
60

B(X · (ϕ3 + ϕ†
4))

}
+ h.c.

+

√
6

2
g5MXϵabϵαβγXa

αXb
β(ϕ1 + ϕ†

2)γ + h.c. .

(D.27)

The components ϕi (i = 1, -, 9) of Ξ are given in Appendix D.4.

D.4 Field Decomposition of SU(5) Representations

The Kähler potential for Φ in the SU(5) irreducible representation is decomposed as follows;

K = Φ†Φ = ∑
i

ϕ†
i ϕi. (D.28)

Here, ϕi transforms as an irreducible representation under the SM gauge groups. Φ† and ϕ†

denote the anti-chiral superfields. In this section, we turn off gauge interactions for simplic-
ity.

In Table D.1, we give the SM decomposition of the SU(5) irreducible representations,
whose Dynkin indices are below that of 75 representation. In this table, square brackets
[· · · ] represent antisymmetric indices while braces {· · · } represent symmetric indices.

We summarize the vacuum polarization coefficients bij, defined in Eq. (3.21), from the
above-mentioned irreducible representations. In Table D.2, bij from each representations
are shown except those from 5 + 5, 10 + 10, 24, and 75 which have been already shown in
Table 3.1. As a check, the sum of bij in a representation divided by its Dynkin index is a
representation independent constant number.
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Table D.1: SM decomposition of the SU(5) irreducible multiplets. (rC, rW)Y denotes a repre-
sentation transforming as SU(3)C rC-plet and SU(2)L rW-plet with hypercharge Y.

SU(5) representation labels and SM representations
ΦA(5) ϕa

1 = (1, 2) 1
2
, ϕα

2 = (3, 1)− 1
3

Φ[AB](10) ϕ
[ab]
1 = (1, 1)1, ϕ

[αβ]
2 = (3, 1)− 2

3
, ϕaα

3 = (3, 2) 1
6

Φ{AB}(15) ϕ
{ab}
1 = (1, 3)1, ϕ

{αβ}
2 = (6, 1)− 2

3
, ϕaα

3 = (3, 2) 1
6

ΦA
B (24)

(ϕ1)
a
b = (1, 3)0, (ϕ2)

α
β = (8, 1)0, ϕ3 = (1, 1)0,

(ϕ4)
α
a = (3, 2)− 5

6
, (ϕ5)

a
α = (3, 2) 5

6

Φ{ABC}(35)
ϕ
{abc}
1 = (1, 4)− 3

2
, ϕ

{ab}α
2 = (3, 3) 2

3
,

ϕ
{αβ}a
3 = (6, 2)− 1

6
, ϕ

{αβγ}
4 = (10, 1)−1

Φ{AB}C(40)
ϕa

1 = (1, 2) 3
2
, ϕα

2 = (3, 1) 2
3
, ϕ

{ab}α
3 = (3, 3) 2

3
,

(ϕ4)
a
α = (3, 2)− 1

6
, ϕ

{αβ}a
5 = (6, 2)− 1

6
, (ϕ6)

α
β = (8, 1)−1

ΦA
[BC](45)

ϕa
1 = (1, 2)− 1

2
, ϕα

2 = (3, 1)− 4
3
, ϕaα

3 = (3, 2) 7
6

,
(ϕ4)

αa
β = (8, 2)− 1

2
, (ϕ5)α = (3, 1) 1

3
,

(ϕ6)
a
bα = (3, 3) 1

3
, ϕ

{αβ}
7 = (6, 1) 1

3

Φ[AB][CD](50) ϕ1 = (1, 1)−2, ϕα
2 = (3, 1)− 1

3
, (ϕ3)

a
α = (3, 2)− 7

6
,

(ϕ4)
[αβ] = (6, 1) 4

3
, (ϕ5)[αβ][ab] = (6, 3)− 1

3
, (ϕ6)

β
αa = (8, 2) 1

2
,

Φ{AB}
C (70)

ϕa
1 = (1, 2) 1

2
, ϕα

2 = (3, 1)− 1
3
, (ϕ3)

{ab}
c = (1, 4) 1

2
,

(ϕ4)
aα
b = (3, 3)− 1

3
, (ϕ5)

{ab}
α = (3, 3) 4

3
,

(ϕ6)
αa
β = (8, 2) 1

2
, (ϕ7)

{αβ}
a = (6, 2)− 7

6
, (ϕ8)

{αβ}
γ = (15, 1)− 1

3

Φ[AB]
[CD]

(75)
(ϕ1)α = (3, 1)− 5

3
, ϕα

2 = (3, 1) 5
3
, ϕαa

3 = (3, 2)− 5
6

,

(ϕ4)αa = (3, 2) 5
6
, ϕ

{αβ}a
5 = (6, 2)− 5

6
, (ϕ6){αβ}a = (6, 2) 5

6
,

ϕ7 = (1, 1)0, (ϕ8)
α
β = (8, 1)0, (ϕ9)

αa
βb = (8, 3)0
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Table D.2: Vacuum polarization coefficients bij. bij which are not listed here are zero.

Reps. bij

15 + 15 b13 = b13 = 3
b23 = b23 = 4

35 + 35
b12 = b12 = 6

b23 = b23 = 12
b34 = b34 = 10

40 + 40

b12 = b13 = b12 = b13 = 3/2
b25 = b35 = b25 = b35 = 3

b24 = b24 = 1/2
b34 = b34 = 9/2

b46 = b56 = b46 = b56 = 4

45 + 45

b12 = b12 = 4/3
b15 = b15 = 1/3

b16 = b35 = b37 = b16 = b35 = b37 = 2
b24 = b45 = b24 = b45 = 8/3

b36 = b36 = 3
b46 = b47 = b46 = b47 = 4

50 + 50

b13 = b13 = 2
b23 = b23 = 3
b26 = b26 = 4
b35 = b35 = 6
b46 = b46 = 8

b56 = b56 = 12

70 + 70

b12 = b15 = b26 = b35 = b12 = b15 = b26 = b35 = 2
b14 = b14 = 1
b27 = b27 = 3

b34 = b46 = b34 = b46 = 4
b47 = b47 = 6
b56 = b56 = 8

b68 = b68 = 10
b78 = b78 = 5
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Appendix E

Radiative Corrections at One-loop

In this appendix, we give the explicit formulae of the loop integrals in terms of supergraphs.
All the external momenta of the chiral (anti-chiral) superfields are set to be p, and the masses
of the MSSM vector superfields are set to be µIR in order to regularize the IR divergence. For
simplicity, we set all coupling constants to be 1 through this appendix. For the corrections
to the three-point vertex functions and the box-like corrections, the loop integrals in text are
the coefficients of Kähler potentials in the limit that the external momenta p2 vanishes.

Radiative Corrections to Two-Point Functions for Matter Superfields

The correction to the self energy of the chiral and anti-chiral matter superfields in the first
generation is induced by the gauge interactions. The one-loop contribution is given as

iΓΦ = i2
∫

d4θ1d4θ2

∫ dDl
(2π)D

−i
2(l2 −M2)

i
(l + p)2

1
16

(D2
2δ21

←−
D2

1)δ12Φ(p, θ1)Φ†(p, θ2)

= −1
2

∫ dDl
(2π)D

1
l2 −M2

1
(l + p)2

∫
d4θΦ†(p, θ)Φ(p, θ) ,

(E.1)

where p is external momentum and M is the mass for the internal vector superfield. δij de-
notes the δ-function for the Grassmann valuable, δij ≡ (δi − δj)

2(δi − δj)
2. The renormalized

one-loop two-point function of matter superfields in the SU(5) GUTs are given as

ΓΦ = −
g2

5
8π2

[
(cΦ

5 −
3

∑
n=1

cΦ
n ) f (M2

X) +
3

∑
n=1

cΦ
n f (µ2

IR)

] ∫
d4θΦ†Φ , (E.2)

where function f (M2) is defined in Eq. (3.18). cΦ
5 and cΦ

n (n = 3, 2, 1) are the quadratic
Casimir defined in text. In the MSSM, we also obtain

ΓEFT
Φ = −

g2
5

8π2

3

∑
n=1

cΦ
n f (µ2

IR)
∫

d4θΦ†Φ . (E.3)
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Radiative Corrections to Two-Point Function for Vector Superfield

Three diagrams in Fig. 3.2 contribute to the radiative corrections to two-point functions from
the (massive) chiral superfields. The corrections from the diagram (a) in Fig. 3.2 are

iΓ(a)
XX = −i2

∫
d4θX†α

r (−p, θ)
∫ dDl

(2π)D
l2 − 1

2 lµσ
µ
αα̇DαDα̇

+ 1
16D2D2

(l2 −M2
1)[(l + p)2 −M2

2]
Xr

α(p, θ) , (E.4)

where M1 and M2 are the masses of the chiral superfields in the loop diagram. After picking
the transverse mode and regularizing the UV divergence, we obtain the finite correction to
the two-point function as follows:

Γ(a)
XX =

1
16π2 B(p2, M2

1, M2
2)
∫

d4θX†α
r (−p, θ)PTXr

α(p, θ) + (longitudinal mode) , (E.5)

where the loop function is defined in Eq. (3.24). The massive chiral superfields also have the
non-zero contribution from the diagram (b) in Fig. 3.2,

Γ(b)
XX = − M2

16π2

(
1− ln

M2

µ2

) ∫
d4θX†α

r (−p, θ)PTXr
α(p, θ) , (E.6)

where M is for the masses of chiral superfields running in the internal line. The third con-
tribution (the diagram (c) in Fig. 3.2) comes from the vertex which includes the VEV of the
adjoint Higgs superfield,

Γ(c)
XX =

1
16π2 A(p2, M2

1, M2
2)
∫

d4θX†α
r (−p, θ)PTXr

α(p, θ) . (E.7)

Here, the loop function A is also defined in Eq. (3.24).

Radiative Corrections to Three-Point Vertices

The one-loop diagrams for the three-point vertex correction are shown in Fig. 3.4. In our mo-
mentum assignment, the momentum of the X boson is q = 0. The one-loop vertex correction
induced by the diagram in Fig. 3.4 (a) is given as

iΓ(v)
1 (p; M) = i3

∫
d4θ1d4θ2d4θ3

∫ dDl
(2π)D

i
(l + p)2

i
(l + p)2

−i
2(l2 −M2)

× 1
16

(D2
2δ23
←−
D2

3)
1

16
(D2

3δ31
←−
D2

1)δ12Φ(θ1)Φ†(θ2)V(θ3) .
(E.8)

By integrating by part and also using theD algebra, we always decompose the vertex correc-
tion into the effective Kähler termsK and the auxiliary terms which vanish asDαΦ,Dα̇Φ† =
0. The effective Kähler term induced by the diagram Fig. 3.4 (a) has the following form:

iK(v)
1 (p; M) =

1
2

∫ dDl
(2π)D

1
[(l + p)2]2

1
l2 −M2 (l + 2p)2ΦΦ†V , (E.9)
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APPENDIX E. RADIATIVE CORRECTIONS AT ONE-LOOP

where we remove the Grassmann valuables in the effective Kähler term, for simplicity.
Next we show the effective Kähler term described in Fig. 3.4 (b) and (c). In our momen-

tum assignment, the diagrams both of Fig. 3.4 (b) and (c) give the same expression, and we
find the one-loop vertex correction and the effective Kähler term as

iΓ(v)
2 (p; M) = i2

∫
d4θ1d4θ2

∫ dDl
(2π)D

i
(l + p)2

−i
2(l2 −M2)

× 1
16
D2

2δ21
←−
D2

1δ12Φ(θ1)Φ†(θ2)V(θ2),

iK(v)
2 (p; M) =− 1

2

∫ dDl
(2π)D

1
(l + p)2

1
l2 −M2 ΦΦ†V .

(E.10)

The diagrams (d) and (e) in Fig. 3.4 include the three-point vertices of vector super-
fields. After carrying out the superspace integral, the vertex corrections from the diagrams
Fig. 3.4(d) and (e) are obtained as

iΓ(v)
3 (p; M) = −4

∫ dDl
(2π)D

1
l2 − µ2

IR

1
(l + p)2

(l + p)2 + p2

l2 −M2

∫
d4θ Φ†ΦV,

iΓ(v)
4 (p; M) = 8

∫ dDl
(2π)D

1
l2 −M2

1
l2 − µ2

IR

∫
d4θ Φ†ΦV .

(E.11)

Since they do not include the auxiliary terms, Γ(v)
n (p; M) (n = 3, 4) is just the Kähler term∫

d4θK(v)
n (p; M) (n = 3, 4).

The contribution from a diagram (f) in Fig. 3.4 is zero as mentioned in the text.

Box-like Corrections

Now we show the effective Kähler terms from the box-like diagrams presented in Fig. 3.5.
These diagrams include one massless and one massive vector superfields. The correction
from the box diagram (Fig. 3.5(a)) is given as:

iΓbox(p; M) ≡ p2
∫ dDq

(2π)D
1

q2 −M2
1

(q + p)2
1

q2 − µ2
IR

1
(q− p)2

∫
d4θΦ†

1Φ2Φ†
3Φ4 . (E.12)

Here, we do not write the external momenta of external superfields for simplicity since we
set them to be the same momentum p. As mentioned above, we set the mass of massless
vector superfields to be µIR as IR regularization. Γbox(p; M) vanishes at the point with p2 =
0, as mentioned in the text.
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The contribution of the crossing-box diagram (Fig. 3.5(b)) is given by

iΓcross(p; M) ≡ 1
4

∫ dDq
(2π)D

1
q2 −M2

1
[(q− p)2]2

1
q2 − µ2

IR

∫
d4θ

[
(q− p)2Φ†

1Φ2Φ†
3Φ4

+
1
2
(q− p)µ(σ

µDD)
(

Φ†
1Φ4

)
Φ2Φ†

3 +
1

16
D2D2

(
Φ†

1Φ4

)
Φ†

3Φ2

]
.

(E.13)

Here, we define the mnemonic symbol (σµDD) ≡ (σµ)α̇αDα̇Dα. This correction has the
auxiliary terms. The corresponding Kähler term is given by removing the auxiliary terms as

iKcross(p; M) =
1
4

∫ dDq
(2π)D

(q− 2p)2

(q2 −M2)[(q− p)2]2(q2 − µ2
IR)

Φ†
1Φ2Φ†

3Φ4 . (E.14)

Finally, we show the contribution from the triangle diagram in Fig. 3.5(c). The correction
from the triangle diagram is obtained as follows:

iΓtriangle(p; M) ≡ −1
4

∫ dDq
(2π)D

1
q2 −M2

1
(q + p)2

1
q2 − µ2

IR

∫
d4θΦ†

1Φ2Φ†
3Φ4 . (E.15)

Since auxiliary terms are not included in the radiative corrections Γbox and Γtriangle, the
corresponding Kähler terms are just written by these corrections as Γn =

∫
d4θ Kn (n =

box, triangle).
The diagram in Fig. 3.5(d) vanishes as mentioned in the text.

One-loop Corrections in EFT

In the last of this appendix, we show the radiative corrections in EFT presented in Fig. 3.6.
We obtain the one-loop effective vertex functions ΓEFT

1 , ΓEFT
2 , and ΓEFT

3 which correspond to
the diagram Fig. 3.6 (b), (c), and (a), respectively, as follows:

iΓEFT
1 (p; µIR) =

1
2

∫ dDq
(2π)D

1
[(q + p)2]2

1
q2 − µ2

IR

∫
d4θ

[
(q + p)2Φ†

1Φ2Φ†
3Φ4

+
1
2
(q + p)µ(σ

µDD)
(

Φ†
1Φ2

)
Φ†

3Φ4 +
1

16
D2D2

(
Φ†

1Φ2

)
Φ†

3Φ4

]
,

iΓEFT
2 (p; µIR) = −

1
2

∫ dDq
(2π)D

1
q2 − µ2

IR

1
(q + p)2

∫
d4θΦ†

1Φ2Φ†
3Φ4 ,

iΓEFT
3 (p; µIR) =

1
2

∫ dDq
(2π)D

1
[(q + p)2]2

1
q2 − µ2

IR
(2p)2

∫
d4θΦ†

1Φ2Φ†
3Φ4 .

(E.16)
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APPENDIX E. RADIATIVE CORRECTIONS AT ONE-LOOP

The momentum assignment is the same as in calculation of the box-like diagrams. The
corresponding Kähler terms are given by removing the auxiliary terms as

iKEFT
1 (p; µIR) =

1
2

∫ dDq
(2π)D

(q + 2p)2

[(q + p)2]2(q2 − µ2
IR)

Φ†
1Φ2Φ†

3Φ4,

iKEFT
2 (p; µIR) = −

1
2

∫ dDq
(2π)D

1
q2 − µ2

IR

1
(q + p)2 Φ†

1Φ2Φ†
3Φ4 ,

iKEFT
3 (p; µIR) = 2p2

∫ dDq
(2π)D

1
[(q + p)2]2

1
q2 − µ2

IR
Φ†

1Φ2Φ†
3Φ4 .

(E.17)

Here, we skip over the ways in which we obtain the effective vertex functions from the di-
agrams since these structures are similar as mentioned above. iKEFT

3 (p; µIR) vanishes when
p2 = 0 is set, as mentioned in the text.
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Appendix F

Anomalous Dimensions via Effective
Kähler Potential

In this chapter, we discuss anomalous dimensions for higher-dimensional operators in the
supersymmetric effective theories. Let us consider the non-renormalizable Kähler potential.

K = K0 + ∆K , (F.1)

with the canonical part K0 and the non-renormalizable part ∆K.

K0 = ∑
Φ

Φa

(
e2gV I

GtI
)a

b
Φb ,

∆K = (λa1···am
A Φa1 · · ·Φam)

(
e2gV I

GT I
)A

B
(λB

b1···bn
Φb1 · · ·Φbn) .

(F.2)

Here, {a1, · · · , am} and {b1, · · · , bn} denote gauge indices, but we do not restrict them to
fundamental ones. I = 1, · · · , dim G represents the indices of gauge generators. The generic
two-loop effective Kähler potential is calculated by using the background field method. In
this chapter, we write anti-chiral superfield as a superfield with bar. In the previous work
[137], the chiral and anti-chiral superfields are expanded around background superfields ϕ
and ϕ, respectively. Φ, Φ, and V denote quantum superfields. We can include also a generic
superpotential W and a generic gauge kinetic function f I J if needed.

It is convenient to use the geometric structure in the generic Kähler potential. A Kähler
metric is defined as the second-derivative of the Kähler potential,

Ga
b ≡ K

a
b =

∂2

∂ϕa∂ϕbK . (F.3)
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APPENDIX F. ANOMALOUS DIMENSIONS VIA EFFECTIVE KÄHLER POTENTIAL

G−1 indicates the inverse of Kähler metric. Given the metric, we construct the geometric
quantities such as the connection

Γ c
ab = K

d
ab (G

−1)c
d , Γab

c = Kab
d(G

−1)d
c , (F.4)

and the curvature,

Ra b
c d ≡ K

ab
cd −K

ab
e(G
−1)e

fK
f

cd . (F.5)

In the background field method, gauge symmetries are spontaneously broken. All su-
perfields obtain masses as function of background superfields. For vector superfields, the
mass matrix (M2

V)I J consists of the mass matrix for ghost superfield M2
C and its transpose.

(M2
C)I J ≡ 2gI gJϕa(tI)

a
bGb

c (tJ)
c
dϕd , M2

V =
1
2

(
M2

C + M2 T
C

)
. (F.6)

Here, the summation symbols for the constituent superfields ϕ and gauge groups are im-
plicit. The mass matrix for chiral and anti-chiral superfields arises from the superpotential
contribution M2

W and the Kähler potential contribution M2
G.

M2 = M2
G + M2

W , (F.7)

with

(M2
G)

b
a = 2gI gJ(tIϕ)

b(h−1)I J(ϕtJG)a ,

(M2
W)b

a = (G−1)b
cWcd

(G−1)e
dWea .

(F.8)

Here, hI J is the sum of gauge kinetic functions, which is Kronecker delta in the limit of
renormalizable theories.

hI J =
1
2
( f I J + f I J) ∼

1
g2

I
δI J (F.9)

In this chapter, we focus only on non-renormalized Kähler terms, so that hI J ∼ δI J .

One- and Two-loop Effective Kähler Potential

One- and two-loop effective Kähler potentials have been already given in Ref. [137]. The
one-loop effective Kähler potential is

K1L = − 1
16π2 Tr h−1M2

C

(
2− ln

h−1M2
C

µ2

)
+

1
32π2 tr M2

W

(
2− ln

M2
W

µ2

)
. (F.10)
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Here, “Tr” denotes trace of gauge adjoint indices I, J, · · · , and “tr” denotes trace of gauge
indices a, b, · · · associated with the chiral and anti-chiral superfields. We define µ ≡ µe−4πγ

with the renormalization scale µ and the Euler’s constant γ.
Two-loop effective Kähler potential is ∗

K2L =
1
2

Ra b
c d Jc d

a b(M2) +
1
6

W ;abcWde f Id e f
a b c(M2, M2, M2)

− 1
2

hLP f P
INhJQ f Q

KM

[
I I JKLMN

(M2
C, M2

C, M2
V)− I I JKLMN

(M2
C, (M2

C)
T, M2

V)
]

− (GtIϕ)
a
;b(ϕtJG) ;c

d Id b I J
a c (M2, M2, M2

V)

− hLP f P
INhJQ f Q

KM I I JKLMN
(M2

V , M2
V , M2

V) .

(F.11)

Here, J and I denotes the loop integrals which are given in Ref. [137].

Two-loop Effective Kähler Potential for Non-renormalizable Operators

We reduce the formulae for the two-loop effective Kähler potential to derive the two-loop
RGEs. We only consider two-loop RGEs via gauge interactions, and hence the superpotential
is zero (W = 0). We divide the tree-level Kähler potential as follows,

K = ϕaϕa + ∆K . (F.12)

∆K denotes the higher dimensional operators. We neglect the higher order terms of ∆K
since it represents much higher dimensional operators. The Kähler metric and its inverse
are easily found as

Ga
b = δa

b + (∆K)a
b , (G−1)a

b = δa
b − (∆K)a

b . (F.13)

Moreover, the Kähler curvature is also just the fourth derivative of ∆K.

Ra b
c d = (∆K)ab

cd . (F.14)

We divide all mass matrices into the canonical and ∆K contributions. Firstly, for the
ghost mass matrices, we have

M2
C ≡ M2

C0 + ∆M2
C , (F.15)

with

(M2
C0)I J = 2gI gJϕa(tI)

a
b(tJ)

b
cϕc , (∆M2

C)I J = gI gJϕa(tI)
a
b(∆K)

b
c(tJ)

c
dϕd . (F.16)

∗If one consider the non-trivial gauge kinetic function, there is an additional term with derivatives of gauge
kinetic functions with respect to ϕ and ϕ.
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Secondly, for the mass matrices of (anti-)chiral superfields, we get

M2 = M2
0 + ∆M2 , (F.17)

with

(M2
0)

b
a = 2g2

I (tIϕ)
b(ϕtI)a , (∆M2)b

a = 2g2
I (tIϕ)

b(ϕtI∆K)a . (F.18)

Here, M2 = M2
G since we assume the superpotential is vanished.

In order to compute the two-loop RGEs, it is sufficient to consider only ln µ term. We
obtain the first line in Eq. (F.11) as follows.

1
2

Ra b
c d Jc d

a b(M2)

∣∣∣∣
ln µ2

=
4g2

I g2
J

(16π2)2 (ln µ2)(∆K)ab
cd(ϕtI)a(ϕtJ)b(tIϕ)

c(tJϕ)
d . (F.19)

Moreover, it is easy to find that the second line in Eq. (F.11) is vanished and the fourth line
is

g−2
L g−2

J fLIN f JKM I I JKLMN
(M2

V , M2
V , M2

V)
∣∣∣
ln µ2

=
6g4

I
(16π2)2 (ln µ2)C(I)

(
2CI(ϕ)ϕaϕa + Ccomp.

I (∆K)∆K
)

.
(F.20)

Here, we use

(ϕtI)a(∆K)a
b(tIϕ)

b

=

(
∑

a
λa1···a···am

A (tI)
a′
a

)(
∑
b

λA
b1···b···bn

(tI)
b
b′

)
(ϕa1
· · · ϕa′ · · · ϕam

)(ϕb1 · · · ϕb′ · · · ϕbn) ,
(F.21)

and group theoretical arguments

(TI)
B
Aλa1···a′···am

B = ∑
a

λa1···a···am
A (tI)

a′
a ,

(TI)
B
Aλb1···b′···bm

B = ∑
b

λA
b1···b···bn

(tI)
b
b′ ,

(TI)
B
A(TI)

A
C = Ccomp.

I δB
C .

(F.22)

Ccomp.
I represents the quadratic Casimir invariant of composite operator λB

b1···bn
ϕb1 · · · ϕbn . In

particular, the following relation is satisfied for any composite operators.

Ccomp.
I ∆K = (ϕtI)a(∆K)a

b(tIϕ)
b . (F.23)
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At last of this section, we subtract the ln µ2 terms from the third term in Eq. (F.11). The
situation for this part is more complicated than that for other part. M2

G is not an Hermitian
operator, so that we redefine the superpropagator along the following procedure. E and E
represent the square root of Kähler metric defined as

Ga
b = Ea

c Ec
b . (F.24)

The quadratic Kähler term for Φ is written under this field re-definition as follows.

S2
Φ =

∫
d8z ΦaEa

x

[
δx

y − (M′2G )
x
y

1
□

]
Ey

b Φb , (F.25)

The mass matrix is also re-defined with vielbein of Kähler metric as follows.

(M′2G )
x
y ≡ 2(EtIϕ)

x(h−1)I J(ϕtJE)y . (F.26)

Due to the re-definition of the superpropagator, the third line of Eq. (F.11) changes as follows.

− (GtIϕ)
a
;b(ϕtJG) ;c

d (E−1)b
x(E−1)d

y I′y x I J
a c (M′2, M′2, M2

V) . (F.27)

Here, the ln µ term of loop integral I′ is given as

I′y x I J
a c (M′2, M′2, M2

V)
∣∣∣
ln µ2

=
1
2

gI gJ

(16π2)2 ln µ2
{
(−4M′2E−1

+ 2M′2 ln M′2E−1
)

y
a(E−1

)x
c (h
−1)I J

+ (E−1
)

y
a(−4M′2E−1

+ 2M′2 ln M′2E−1
)x

c (h
−1)I J

+(E−1
)

y
a(E−1

)x
c (−4M2

Vh−1 + 2M2
V ln M2

Vh−1)I J
}

.

(F.28)

Using the following relation,

(E−1
)w

a (M′2)x
z (E−1)b

z = 2(tIϕ)
b(h−1)I J(ϕtJ)a ,

(E−1
)w

a (∆M′2)x
z (E−1)b

z = (∆K)b
c(tIϕ)

c(h−1)I J(ϕtJ)a + (tIϕ)
b(h−1)I J(ϕtJ)c(∆K)c

a,
(F.29)

we obtain

− (GtIϕ)
a
;b(ϕtJG) ;c

d (E−1)b
x(E−1)d

y I′y x I J
a c (M′2, M′2, M2

V)
∣∣∣
ln µ2

=
1
2

ln µ2

(16π2)2

{
16g2

I g2
J CI(ϕ)CJ(ϕ)ϕaϕa + 8g4

I SICJ(ϕ)ϕaϕa + 4g4
I SIC

comp.
I (∆K)∆K

+ 4g2
I g2

J

[
(ϕtJtItI)a(∆K)a

b(tJϕ)
b + (ϕtJ)a(∆K)a

b(tItItJϕ)
b
]

+ 4g2
I g2

J ϕ(tItJ + tJtI)ϕ tr
[
tJ(∆KtIϕ) + tI(∆KϕtJ)

]
+ 8g2

I g2
J (ϕtJ)a

[
∆KtIϕ + ∆KϕtI

]a
b (tItJϕ)

b

+8g2
I g2

J (ϕtJtI)a
[
∆KtIϕ + ∆KϕtI

]a
b (tJϕ)

b
}

.

(F.30)
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Here, we define SI ≡ ∑ϕ′ II(ϕ
′). We also define the short-hand notation (∆KTKϕ)a

b and
(∆KϕTK)

a
b as follows.

(∆KtIϕ)
a
b = (∆K)a

bc(tIϕ)
c , (∆KϕtI)

a
b = (∆K)ac

b (ϕtI)c . (F.31)

Finally, we obtain ln µ derivative of the two-loop effective Kähler potential as follows.

(16π2)2µ
dK2L

dµ

= 8
[
(SI − 3C2(I))CI(ϕ)g4

I + 2CI(ϕ)CJ(ϕ)g2
I g2

J

]
ϕaϕa

+ 4(SI − 3C2(I))Ccomp.
I (∆K)g4

I ∆K

+ 4g2
I g2

J

[
(ϕtJtItI)a(∆K)a

b(tJϕ)
b + (ϕtJ)a(∆K)a

b(tItItJϕ)
b
]

+ 4g2
I g2

J ϕ(tItJ + tJtI)ϕ tr
[
tJ(∆KtIϕ) + tI(∆KϕtJ)

]
+ 8g2

I g2
J (ϕtJ)a

[
∆KtIϕ + ∆KϕtI

]a
b (tItJϕ)

b

+ 8g2
I g2

J (ϕtJtI)a
[
∆KtIϕ + ∆KϕtI

]a
b (tJϕ)

b

+ 8g2
I g2

J (∆K)ab
cd(ϕtI)a(ϕtJ)b(tIϕ)

c(tJϕ)
d .

(F.32)

F.1 Two-Loop Anomalous Dimension

Now, we derive a general form of two-loop anomalous dimensions for higher-dimensional
operators in the SUSY SM. The Callan-Symanzik equation at two-loop level is given by the
following form.

µ
∂Γ(2)

∆K
∂µ

+ β
(1)
I

∂Γ(1)
∆K

∂gI
−∑

ϕ

[
γ
(1)
ϕ ϕ

∂

∂ϕ
+ γ

(1)
ϕ

ϕ
∂

∂ϕ

]
Γ(1)

∆K

−∑
ϕ

[
γ
(2)
ϕ ϕ

∂

∂ϕ
+ γ

(2)
ϕ

ϕ
∂

∂ϕ

]
Γ(0)

∆K + γ
(1)
∆KΓ(1)

∆K + γ
(2)
∆KΓ(0)

∆K = 0 .

(F.33)

Here, Γ(i)
∆K represents the ∆K part of the i-th loop order effective Kähler potential. Since the

corresponding part of the one-loop effective Kähler potential is given by

Γ(1)
∆K = − 1

16π2 Tr∆M2
C = − 1

16π2 · 2g2
I Ccomp.

I ∆K . (F.34)

The anomalous dimension for a superfield ϕ is given by

γ
(1)
ϕ = −2 ∑

I

g2
I

16π2 CI(ϕ) ,

γ
(2)
ϕ = 2 ∑

I,J

g2
I g2

J

(16π2)2 CI(ϕ) [bIδI J + 2CJ(ϕ)] ,
(F.35)
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where bI = SI − 3C2(I) is the coefficient of the one-loop beta function. Then, we obtain each
parts of Eq. (F.33) combining above-listed pieces. We find the second term of Eq. (F.33) as
follows,

β
(1)
I

∂Γ(1)
∆K

∂gI
= − 1

(16π2)2 · 4bI g4
I Ccomp.

I ∆K, (F.36)

and the third and fourth term of Eq. (F.33) as

γ
(1)
ϕ ϕ

∂

∂ϕ
Γ(1)

∆K =
4nϕ

(16π2)2 g2
I g2

J CJ(ϕ)C
comp.
I ∆K ,

γ
(1)
ϕ

ϕ
∂

∂ϕ
Γ(1)

∆K =
4nϕ

(16π2)2 g2
I g2

J CJ(ϕ)C
comp.
I ∆K ,

γ
(2)
ϕ ϕ

∂

∂ϕ
Γ(0)

∆K =
nϕ

(16π2)2

[
2bICI(ϕ)g4

I + 4g2
I g2

J CI(ϕ)CJ(ϕ)
]

∆K ,

γ
(2)
ϕ

ϕ
∂

∂ϕ
Γ(0)

∆K =
nϕ

(16π2)2

[
2bICI(ϕ)g4

I + 4g2
I g2

J CI(ϕ)CJ(ϕ)
]

∆K .

(F.37)

Here, nϕ denotes the number of superfield ϕ which is contained in ∆K.

Finally, γ
(i)
∆K denotes the i-th loop anomalous dimension for the composite operator ∆K.

The one-loop anomalous dimension is calculated in Ref. [47] for the generic composite op-
erator ∆K.

γ
(1)
∆K =

g2
I

16π2 [4Ccomp.
I − 2 ∑

ϕ

(CI(ϕ)nϕ + CI(ϕ)nϕ)] . (F.38)

Combining the above results and Eq. (F.32), we have

(16π2)2γ
(2)
∆K∆K

= 2

[
bI ∑

ϕ

(CI(ϕ)n(ϕ) + CI(ϕ)nϕ)δI J + 2 ∑
ϕ

(CI(ϕ)CJ(ϕ)nϕ + CI(ϕ)CJ(ϕ)nϕ)

+ 4Ccomp.
I Ccomp.

J

]
g2

I g2
J ∆K

− 4g2
I g2

J

[
(ϕtJtItI)a(∆K)a

b(tJϕ)
b + (ϕtJ)a(∆K)a

b(tItItJϕ)
b
]

− 4g2
I g2

J ϕ(tItJ + tJtI)ϕ tr
[
tJ(∆KtIϕ) + tI(∆KϕtJ)

]
− 8g2

I g2
J (ϕtJ)a

[
∆KtIϕ + ∆KϕtI

]a
b (tItJϕ)

b

− 8g2
I g2

J (ϕtJtI)a
[
∆KtIϕ + ∆KϕtI

]a
b (tJϕ)

b

− 8g2
I g2

J (∆K)ab
cd(ϕtI)a(ϕtJ)b(tIϕ)

c(tJϕ)
d .

(F.39)
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We show an identity for the quadratic Casimir invariant for the composite operator ∆K in
Eq. (F.23). By multiplying (ϕtJ)b(tJϕ)

d and the second derivative of the above relation, we
obtain the following relation about the fourth derivative of ∆K.

(∆K)ab
cd(ϕtI)a(ϕtJ)b(tIϕ)

c(tJϕ)
d

= Ccomp.
I Ccomp.

J ∆K

− (ϕtJ)a(∆KϕtI)
a
b(tItJϕ)

b − (ϕtJtI)a(∆KtIϕ)
a
b(tJϕ)

b − (ϕtJtI)a(∆K)a
b(tItJϕ)

b .

(F.40)

We eliminate the fourth derivative term by using this identity.
As a result, the two-loop anomalous dimension for higher-dimensional operator ∆K is

given by the following form.

(16π2)2γ∆K(2)∆K

= 2

[
bI ∑

ϕ

(CI(ϕ)n(ϕ) + CI(ϕ)nϕ)δI J + 2 ∑
ϕ

(CI(ϕ)CJ(ϕ)nϕ + CI(ϕ)CJ(ϕ)nϕ)

]
g2

I g2
J ∆K

− 4g2
I g2

J

[
(ϕtJtItI)a(∆K)a

b(tJϕ)
b + (ϕtJ)a(∆K)a

b(tItItJϕ)
b
]

− 4g2
I g2

J ϕ(tItJ + tJtI)ϕ tr
[
tJ(∆KtIϕ) + tI(∆KϕtJ)

]
− 8g2

I g2
J (ϕtJ)a(∆KtIϕ)

a
b(tItJϕ)

b − 8g2
I g2

J (ϕtJtI)a(∆KϕtI)
a
b(tJϕ)

b

+ 8g2
I g2

J (∆K)a
b(ϕtItJ)a(tJtIϕ)

b .
(F.41)

This is the generic formula of two-loop anomalous dimension for arbitrary higher-dimensional
Kähler potential. However, this result is still complicated except the first term.

Now, we apply the above formula to the dimension-six operators under some assump-
tions. It is required that the generic Kähler potential is invariant under the gauge transfor-
mation, that is

K(ϕ e−iα, eiαϕ)−K(ϕ, ϕ) = 0 , (F.42)

where α = αItI denotes the gauge transformation parameter. We expand the above identity
in α, each order of α should be vanished for the gauge invariance. We especially obtain a
relation on the Kähler potential from the α2 term as follows.

(ϕtItK)aKa + (tItKϕ)aKa + (ϕtI)a(ϕtK)bKab + (tIϕ)
a(tKϕ)bKab = 2(ϕtI)aKa

b(tKϕ)b , (F.43)

We take the gauge adjoint indices I = K and sum up them in both sides. Since the canonical
part of K itself is trivially satisfied the above identity, we concentrate only on the higher-
dimensional part. Besides, we operate (tJϕ)

c(ϕtJ)d∂2/∂ϕc∂ϕd on both sides, and thus we
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obtain,

∑
ϕ

[
nϕCI(ϕ) + nϕCI(ϕ)

]
Ccomp.

J ∆K

+ 2(ϕtJtI)a(∆K)ab
d (ϕtI)b(tJϕ)

d + 2(ϕtJ)a(∆K)a
bd(tIϕ)

b(tItJϕ)
d

+ (ϕtI)a(ϕtI)b(ϕtJ)c(∆K)abc
d (tJϕ)

d + (ϕtJ)c(∆K)c
abd(tIϕ)

a(tIϕ)
b(tJϕ)

d

= 2Ccomp.
I Ccomp.

J ∆K .

(F.44)

Here, we use (ϕtI)a(∆K)a
b(tIϕ)

b = Ccomp.
I ∆K, again. If we assume that the dimension-six

operators contain two chiral and two anti-chiral superfields, the third line is vanished. By
using this relation, we remove the third derivative terms in Eq. (F.41).

For dimension-six Kähler potentials, such as ∆K = (λa1a2
A ϕa1

ϕa2
)(λA

b1b2
ϕb1ϕb2), the generic

two-loop anomalous dimension is reduced the following form.

(16π2)2γ∆K(2)∆K

= 2

[
bI ∑

ϕ

(CI(ϕ)n(ϕ) + CI(ϕ)nϕ)δI J + 2 ∑
ϕ

(CI(ϕ)CJ(ϕ)nϕ + CI(ϕ)CJ(ϕ)nϕ)

−
(

4Ccomp.
I − 2 ∑

ϕ

(CI(ϕ)nϕ + CI(ϕ)nϕ)

)
Ccomp.

J

]
g2

I g2
J ∆K

− 4g2
I g2

J

[
(ϕtJtItI)a(∆K)a

b(tJϕ)
b + (ϕtJ)a(∆K)a

b(tItItJϕ)
b
]

− 4g2
I g2

J ϕ(tItJ + tJtI)ϕ tr
[
tJ(∆KtIϕ) + tI(∆KϕtJ)

]
+ 8g2

I g2
J (ϕtItJ)a(∆K)a

b(tJtIϕ)
b .

(F.45)

F.2 Application: Proton Decay Operators

We consider the following higher-dimensional Kähler potential causing the baryon number
violation.

∆K =
2

∑
i=1

C(i)O(i) + h.c. , (F.46)

with operators

O(1) = ϵαβγϵrs(U
†
)α(D†

)βQrγLs ,

O(2) = ϵαβγϵrsE†
(U†

)αQrβQsγ ,
(F.47)

and C(i) (i = 1, 2) corresponding to the Wilson coefficients.
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Diagonal term

We consider the case of tI and tJ are generators of the same non-Abelian group. Since all
superfields are in the (anti-)fundamental or singlet, we can factor out CI for fundamental
representations,

(ϕtJtItI)a(O(i))a
b(tJϕ)

b + (ϕtJ)a(O(i))a
b(tItItJϕ)

b = (CI:ϕ + CI:ϕ)C
comp.
J O(i) . (F.48)

Here, CI:ϕ and CI:ϕ come from the first and second term of LHS, respectively. In other words,
if the (anti-)chiral part of O(i) includes only the singlet superfields, CI:ϕ = 0 (CI:ϕ = 0). This
expression is applicable to the case of non-Abelian mixing terms (SU(2)-SU(3) term). We
also obtain the following after carrying out the brute-force calculation

(ϕtJtI)a(O(i))a
b(tItJϕ)

b =
8
9
O(i) , (i = 1, 2) , (F.49)

for SU(3) generators. For SU(2) generators, since the all anti-chiral superfields are weak
singlets, the corresponding terms are zero. For U(1)Y generators, we find that

(ϕtJtItI)a(O(i))a
b(tJϕ)

b + (ϕtJ)a(O(i))a
b(tItItJϕ)

b = (S3
ϕ

S1
ϕ + S1

ϕ
S3

ϕ)O(i) , (F.50)

and

(ϕtJtI)a(O(i))a
b(tItJϕ)

b = S2
ϕ

S2
ϕO(i) . (F.51)

Here, we define the polynomial of U(1) charge as follows.

Sn
ϕ
= ∑

ϕ

qn
ϕ

, Sn
ϕ = ∑

ϕ

qn
ϕ , (F.52)

where qϕ and qϕ are U(1)Y charges for the chiral superfield ϕ and the anti-chiral superfield
ϕ, respectively.

Mixed terms

By brute-force calculations, we obtain the SU(3)-U(1) terms as follows.

(ϕtJtI)a(O(i))a
b(tItJϕ)

b =
2
3

S1
Cϕ

S1
CϕO(i) , (F.53)

where Sn
Cϕ (Sn

Cϕ
) is defined as the sum of n-th power of U(1) charges of ϕ (ϕ) with color

charge.

Sn
Cϕ

= ∑
ϕ∈SU(3)

qn
ϕ

, Sn
Cϕ = ∑

ϕ∈SU(3)
qn

ϕ , (F.54)
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Since there is no anti-chiral superfield with non-zero SU(2) charge, SU(2)-U(1) and SU(3)-
SU(2) terms do not appear from the above term.

Finally, we consider the mixing terms from

(ϕtJtItI)a(O(i))a
b(tJϕ)

b + (ϕtJ)a(O(i))a
b(tItItJϕ)

b . (F.55)

If the subscript I corresponds to the non-Abelian group and J denotes the U(1) group, we
can factor out the quadratic Casimir for the non-Abelian group, and then we obtain,

(ϕtJtItI)a(O(i))a
b(tJϕ)

b + (ϕtJ)a(O(i))a
b(tItItJϕ)

b

= (CI:ϕS1
Iϕ

S1
ϕ + CI:ϕS1

ϕ
S1

Iϕ)O(i) ,
(F.56)

where Sn
Iϕ

and Sn
Iϕ denote the sum of n-th power of U(1) charges restricted on the fields with

non-trivial non-Abelian charges. If I denotes an index of U(1) group, we can not factor out
the square of U(1) charges. In such case, there is non-zero contribution if J = SU(3).

(ϕtJtItI)a(O(i))a
b(tJϕ)

b + (ϕtJ)a(O(i))a
b(tItItJϕ)

b

=
2
3
(nC
OS2

Cϕ
+ nC

OS2
Cϕ)O(i) .

(F.57)

Here, nC
O (nC) denotes the number of chiral superfields (anti-chiral superfields) with color

charge.

Anomalous Dimension

We divide the two-loop anomalous dimension into the following parts.

γ
(2)
O(i) = ∑

I≥J

g2
I g2

J

(16π2)2 [γ
(2)
O(i) ]I J . (F.58)
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From the above computation, we obtain [γ
(2)
O(i) ]I J symbolically as follows.

[γ
(2)
O(i) ]33 = 6C3(b3 + 2C3) +

64
9
− 4Ccomp.

3 (2Ccomp.
3 − C3) ,

[γ
(2)
O(i) ]22 = 4C2(b2 + 2C2) ,

[γ
(2)
O(i) ]11 = 2b1(S2

ϕ
+ S2

ϕ) + 4(S4
ϕ
+ S4

ϕ)− 2q2
comp.(4q2

comp. − 2(S2
ϕ
+ S2

ϕ))

− 4(S3
ϕ

S1
ϕ + S1

ϕ
S3

ϕ − 2S2
ϕ

S2
ϕ) ,

[γ
(2)
O(i) ]32 = 8C3C2n(3,2) + 4C2Ccomp.

3 ,

[γ
(2)
O(i) ]21 = 8C2(S2

Wϕ
+ S2

Wϕ) + 8C2q2
comp. − 4(C2:ϕS1

Wϕ
S1

ϕ + C2:ϕS1
ϕ

S1
Wϕ) ,

[γ
(2)
O(i) ]31 = 8C3(S2

Cϕ
+ S2

Cϕ)− 16q2
comp.C

comp.
3 + 12q2

comp.C3 + 4Ccomp.
3 (S2

ϕ
+ S2

ϕ)

− 4(C3:ϕS1
Cϕ

S1
ϕ + C3:ϕS1

ϕ
S1

Cϕ)−
8
3
(nC
OS2

Cϕ
+ nC

OS2
Cϕ) .

(F.59)

Here, CN = (N2− 1)/2N is the quadratic Casimir for fundamental representation of SU(N).
Sn

Wϕ (Sn
Wϕ

) is defined as the sum of n-th power of U(1) charges of chiral superfields (anti-

chiral superfields) with weak charge as similar as Sn
Cϕ (Sn

Cϕ
). n(3,2) in [γ

(2)
O(i) ]32 denotes the

number of fields with both color and weak charges.

[γ
(2)
O(1) ]33 = [γ

(2)
O(2) ]33 =

64
3

+ 8b3 ,

[γ
(2)
O(1) ]22 = [γ

(2)
O(2) ]22 =

9
2
+ 3b2 ,

[γ
(2)
O(1) ]11 =

113
150

+ b1 , [γ
(2)
O(2) ]11 =

91
50

+
9
5

b1 ,

[γ
(2)
O(1) ]32 = 12 , [γ

(2)
O(2) ]32 = 20 ,

[γ
(2)
O(1) ]21 =

6
5

, [γ
(2)
O(2) ]21 =

2
5

,

[γ
(2)
O(1) ]31 =

68
15

, [γ
(2)
O(2) ]31 =

76
15

.

(F.60)

This result is consistent with the previous one [47].
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Appendix G

Two-loop RGEs

G.1 Dimensionless Couplings

Gauge Couplings and Yukawa Couplings

In our analysis, we have used the RGEs at the two-loop level. The RGEs for the gauge
coupling constants are given as follows [138, 139].

dgi

d ln µ
=

gi

16π2

[
big2

i +
1

16π2

(
∑

j
bijg2

i g2
j −∑

j
aijg2

i tr[YjY†
j ]

)]
. (G.1)

Here, j = 1, 2, and 3 in the last term respectively correspond to Yu, Yd, and Ye in the SM, but
to YU, YD, and YE in the MSSM. The coefficients in the SM are

bij =


199
50

27
10

44
5

9
10

35
6 12

11
10

9
2 −26

 , bi =

(
41
10

,−19
6

,−7
)

, aij =


17
10

1
2

3
2

3
2

3
2

1
2

2 2 0

 . (G.2)

The one-loop RGEs for the Yukawa coupling matrices are given as∗

dYu

d ln µ
=

1
16π2

[
−∑

i
cSM

i g2
i +

3
2

YuY†
u −

3
2

YdY†
d + Y2(S)

]
Yu ,

dYd
d ln µ

=
1

16π2

[
−∑

i
c′SM

i g2
i +

3
2

YdY†
d −

3
2

YuY†
u + Y2(S)

]
Yd ,

dYe

d ln µ
=

1
16π2

[
−∑

i
c′′SM

i g2
i +

3
2

YeY†
e + Y2(S)

]
Ye ,

(G.3)

∗In our calculation, we need the RGEs for the gauge couplings at the two-loop level. It is sufficient to take
into account the RGEs for the Yukawa couplings at the one-loop level since the Yukawa couplings appear in
the two-loop-level RGEs for the gauge couplings.
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where

cSM
i =

(
17
20

,
9
4

, 8
)

, c′SM
i =

(
1
4

,
9
4

, 8
)

, c′′SM
i =

(
9
4

,
9
4

, 0
)

, (G.4)

and

Y2(S) = tr
[
3YuY†

u + 3YdY†
d + YeY†

e

]
. (G.5)

The coefficients of the RGEs for the gauge coupling constants in the MSSM are obtained
as

bij =


199
25

27
5

88
5

9
5 25 24
11
5 9 14

 , bi =

(
33
5

, 1,−3
)

, aij =


26
5

14
5

18
5

6 6 2

4 4 0

 . (G.6)

The one-loop RGEs for the Yukawa matrices in the MSSM are given as

dYU

d ln µ
=

1
16π2

[
−∑

i
cMSSM

i g2
i + 3YUY†

U + YDY†
D + tr(3YUY†

U)

]
YU ,

dYD

d ln µ
=

1
16π2

[
−∑

i
c′MSSM

i g2
i + 3YDY†

D + YUY†
U + tr(3YDY†

D + YEY†
E)

]
YD ,

dYE

d ln µ
=

1
16π2

[
−∑

i
c′′MSSM

i g2
i + 3YEY†

E + tr(3YDY†
D + YEY†

E)

]
YE ,

(G.7)

where

cMSSM
i =

(
13
15

, 3,
16
3

)
, c′MSSM

i =

(
7

15
, 3,

16
3

)
, c′′MSSM

i =

(
9
5

, 3, 0
)

. (G.8)

The boundary conditions for the Yukawa coupling constants at the SUSY breaking scale
(MS) are

YU(MS) =
1

sin β
Yu(MS) , YD(MS) =

1
cos β

Yd(MS) , YE(MS) =
1

cos β
Ye(MS) , (G.9)

where tan β is the ratio of vacuum expectation values in the MSSM.
When the vector-like matters are introduced in the MSSM, the RGEs for the gauge cou-

pling constants are modified as

bi → bi + δbi , bij → bij + δbij , (G.10)
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where bi and bij are the coefficients of the one-loop and two-loop RGEs in the MSSM, respec-
tively. δbi and δbij are given by Ref. [140]:

δbi = (n5 + 3n10, n5 + 3n10, n5 + 3n10) ,

δbij =


7
15 n5 +

23
5 n10

9
5 n5 +

3
5 n10

32
15 n5 +

48
5 n10

3
5 n5 +

1
5 n10 7n5 + 21n10 16n10

4
15 n5 +

6
5 n10 6n10

34
3 n5 + 34n10

 ,
(G.11)

where n5 and n10 denote the number of 5 + 5 and 10 + 10 vector-like matter superfields,
respectively.

QCD Coupling

At the low-energy scale, the QCD coupling becomes strong, and thus the radiative correc-
tions via the QCD coupling would be important. The RGE for the QCD coupling is given by

µ
dgS

dµ
=

b1g3
S

16π2 +
b2g5

S
(16π2)2 . (G.12)

The coefficients of the beta function are

b1 = −
(

11
3

C2 −
2
3

NF

)
,

b2 = −
(

34
3
(C2)

2 − 8
3

NF −
10
3

C2NF

)
,

(G.13)

with C2 and NF are the number of colors and quark flavors.

G.2 Wilson Coefficients

In this section, we show show anomalous dimensions for the baryon-number violating op-
erators up to two-loop level. Then, we give numerical factors for the two-loop level estima-
tions.

Short-Distance Effects –SM–

The effective Lagrangian below the EW scale is given by

L = ∑
m

CmOm + h.c. , (G.14)
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with operators

OLR = ϵαβγϵrs(u
Cγ
L γµqβr

L )(l
Cs
R γµdα

R) ,

OLL = ϵαβγϵrs(u
Cγ
L γµqβr

L )(eC
L γµqαs

L ) .
(G.15)

Here, OLR and OLL respectively correspond to O(1)
4F and O(2)

4F in Eq. (3.9) in the text.

µ
d

dµ
Cm(µ) = γmCm(µ) , (G.16)

m = LL, LR

γm = ∑
i

γ
(1)
i,m α̃i + ∑

i≥j
γ
(2)
ij,mα̃iα̃j + · · · , (G.17)

where α̃i = g2
i /16π2 (i = 1, 2, 3). Here, g1 is the GUT-normalized U(1)Y gauge coupling,

again. The one-loop anomalous dimensions are given by

γ
(1)
3,m = −4 , γ

(1)
2,m = −9

2
, γ

(1)
1,m =


−11

10
(m = LL)

−23
10

(m = LR)

. (G.18)

The above results are well-known by Ref. [42]. The two-loop anomalous dimensions were
derived by authors of Ref. [45] in the context of the non-supersymmetric GUTs.

γ
(2)
33,m = −86

3
+

8
9

ng , γ
(2)
22,m = −579

16
+ 3ng , γ

(2)
11,m =


479

1200
− 2

15
ng (m = LL)

3143
1200

− 14
15

ng (m = LR)

,

γ
(2)
21,m =


− 3

40
(m = LL)

17
40

(m = LR)

, γ
(2)
31,m =


59
45

(m = LL)

46
9

(m = LR)

, γ
(2)
32,m =

9 (m = LL)

10 (m = LR)
.

(G.19)

Here, ng denotes the number of generations.
The numerical factors for Cm are

CLL(mZ)

CLL(MS)
= 1.12 ,

CLR(mZ)

CLR(MS)
= 1.13 . (G.20)

Here, MS is the SUSY scale and set to be 1 TeV.
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Short-Distance Effects –SUSY SM–

As we have shown in the previous chapter, the two-loop anomalous dimensions for the
baryon number violating operators are derived using effective Kähler potential. In this sub-
section, we summarize the anomalous dimensions up to two-loop level. The effective Kähler
potential is defined in Eq. (F.46). The RGE running of the Wilson coefficients is

µ
d

dµ
C(i)(µ) = γO(i)C(i)(µ) , (i = 1, 2) . (G.21)

The anomalous dimensions are decomposed as

γO(I) = ∑
i
[γ

(1)
O(I) ]iα̃i + ∑

i≥j
[γ

(2)
O(I) ]ijα̃iα̃j + · · · . (G.22)

The two-loop anomalous dimensions [γ
(2)
O(I) ]ij are given in Eq. (F.60). The one-loop coeffi-

cients were derived in [43].

[γ
(1)
O(1) ]3 = [γ

(1)
O(2) ]3 = −8

3
,

[γ
(1)
O(1) ]2 = [γ

(1)
O(2) ]2 = −3 ,

[γ
(2)
O(1) ]1 = −11

15
, [γ

(2)
O(2) ]1 = −23

15
.

(G.23)

The numerical factors for C(i) (i = 1, 2) are

C(1)(MS)

C(1)(MGUT)
= 1.97 ,

C(2)(MS)

C(2)(MGUT)
= 2.07 . (G.24)

Here, MS is the SUSY scale and set to be 1 TeV, and MGUT = 2× 1016 GeV.

Long-Distance Effect

Below the EW scale, the QCD correction to the Wilson coefficients would be important due to
the strong coupling. The evolution of the Wilson coefficients for the proton decay operators
has been evaluated by the authors of Ref. [46] up to two-loop level. The RGE for the Wilson
coefficients is given by

µ
d

dµ
C =

[
γ
(1)
C

αS

4π
+ γ

(2)
C

( αS

4π

)2
]

C , (G.25)

with anomalous dimensions

γ
(1)
C = −4 ,

γ
(2)
C = −

(
14
3

+
4
9

NF + ∆
)

.
(G.26)
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Here, NF is the number of quark flavors. The value of ∆ changes depending on the proton
decay operators: ∆ = 0 for left-handed (right-handed) quarks and lepton operators while
∆ = −10/3 for the operators including different chiralities. Thus, in our simulations, we
use ∆ = −10/3 since the dimension-six operators via X-boson exchange include both of
chiralities. The analytic solution of the RGE is easily found as follows.

C(µ)
C(µ0)

=

(
αS(µ)

αS(µ0)

) γ
(1)
C

2b1
(

4πb1 + b2αS(µ)

4πb1 + b2αS(µ0)

) γ
(2)
C

2b2
−

γ
(1)
C

2b1
, (G.27)

with the running of QCD coupling given in Eq. (G.12).
We now give the numerical values for the long-distance effect. The long-distance effect

AL is defined as the ratio of the Wilson coefficients at the hadronic scale µH and the EW scale
mZ.

AL =
C(µH)

C(mZ)
. (G.28)

The hadronic scale is µH = 2 GeV, where the hadron matrix elements are evaluated. Thus,
the analytic expression for AL is given by

AL =

(
αS(µH)

αS(mb)

) 6
25
(

αS(mb)

αS(mZ)

) 6
23
(

αS(µH) +
50π
77

αS(mb) +
50π
77

)− 173
825
(

αS(mb) +
23π
29

αS(mZ) +
23π
29

)− 430
2001

. (G.29)

Then, we have the numerical value for AL as

AL = 1.25 . (G.30)
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