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概要
2012年 7月の大型ハドロン衝突型加速器 (LHC)実験におけるヒッグス粒子の発見によっ

て、素粒子標準模型 (標準模型)の全てのパラメーターが既知となった。この模型が現在知
られている多くの素粒子現象を説明する一方で、ニュートリノ質量の起源に関する説明が
できない、暗黒物質候補となる粒子の欠如、電荷の量子化の理由がない、などの理由で拡
張も期待されている。
超対称性大統一理論はそのような拡張模型の一つの候補として盛んに研究されている。

大統一理論では、三種類のゲージ相互作用が高いエネルギースケール (∼ 1016GeV)で統一
している。このゲージ群の統一による力の統一のみならず、クォークや電子、ニュートリノ
という物質粒子も統一的に記述される。超対称性は標準模型粒子と同じ表現で異なるスピ
ン統計性を持つ粒子を導入する対称性であり、この導入によって力の統一が良くなる。
大統一を破れによって獲得する大統一で現れる粒子の質量は非常に重く、加速器実験で

はこれらを直接探索することは不可能である。一方、超対称大統一理論では、クォークと電
子、ニュートリノを混ぜる相互作用のため、核子崩壊という現象が予言される。そのため核
子崩壊は、高エネルギーでの力の大統一を検証する一つの方法である。
標準模型を最小に拡張した最小超対称 SU(5)大統一模型では、陽子が荷電 K中間子と

反ニュートリノへ崩壊するモードに関して、その寿命が 1030年程度と予言される。この予
言値は観測的制限と矛盾しているため、このモードを生成する質量次元５の有効演算子を、
抑制または禁止するように模型を拡張しなければならなかった。
近年の LHC実験による超対称粒子の直接探索の結果や、ヒッグス粒子の質量を再現す

る、最も簡潔な超対称模型の一つに、超対称性の破れのスケールが高い可能性が注目され
ている。本研究では、高いスケールで破れる超対称性を持つ最小超対称 SU(5)大統一模型
において、大統一スケールで現れる粒子に関する質量の評価、及び質量次元５の演算子に
起因した陽子の寿命を定量的に評価した。その結果、高スケール超対称性のもとで大統一
が改善すること、寿命の短い崩壊モードが実験と矛盾せず、将来実験において観測される可
能性があることを明らかにした。
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Abstract

The standard model for particle physics (the standard model: the SM) describes the
strong interaction, the weak interaction and the electromagnetic interaction. The strong
interaction is the gauge interaction which describes dynamics of quarks and gluons,
which construct nucleons; protons and neutrons. β decay (n → p + e+ + ν) is well ex-
plained by using the weak boson which obtains a mass by spontaneously symmetry
breaking. The SM based on these gauge interactions explains many experimental results
and phenomena.

In July 2012, the SM Higgs boson was discovered at the Large Hadron Collider (LHC):
that is, all particles of the SM were discovered up until now. On the other hands, this
phenomenological model is expected to be extended for some reasons: no existence of
candidates of the dark matter, the origin of the neutrino mass, the reason for the charge
quantization etc.

A candidate of the physics beyond the standard model (BSM) is the supersymmetric
grand unified theory (SUSY GUT). In GUT, three gauge interactions are unified at very
high energy (∼ 1016GeV). Furthermore, the matter fields which are quarks and leptons
are also unified. Supersymmetry (SUSY) introduces the copies which have the same
charge as the SM particles and have the opposite spin-statistics against the SM particles.
It is also well-known that SUSY improves the gauge coupling unification.

Since the energy scale of GUT is much high, the masses of the new particles which
obtain mass due to SSB of GUT are much heavy. Thus, it is impossible to detect these
particles directly in collider experiments. However, SUSY GUTs predict nucleon decay
due to interactions mixing quarks and leptons. Nucleon decay is one of the ways to
verify the unification of the gauge interactions. In the Super-Kamiokande experiment,
however, there is no evidence of nucleon decay.

In the minimal SUSY SU(5) GUT, which is the minimal GUT extension of the SM, the
partial lifetime of proton is about 1030 years for the mode p → K+ + ν. On the other hand,
an experimental lower bound for this mode is 5.9 × 1033 years. Since the theoretical pre-
diction is contradicted this experimental results, the dimension five effective operators
which give rise to this decay must be suppressed or forbidden by some mechanism.

The high-scale SUSY breaking mechanism gains attention as the most simple SUSY
model which explains the recent SUSY search experiments at collider and the mass of
the SM Higgs.

In this work, we have investigated the minimal SUSY SU(5) GUT with the high-scale
SUSY breaking mechanism; in particular, we have evaluated the mass spectrum of the
GUT particles and the proton lifetime caused by the dimension-five operators quantita-
tively. As a results, we have revealed that the unification is improved in terms of the
mass of GUT-particles; that is, the unification of the standard model gauge interactions
is improved without large threshold corrections at GUT scale. Moreover, we also have
revealed that the dimension-five operators is not need to suppress or forbid; this decay
mode may be discovered in the future experiment at Hyper-Kamiokande. This work is
based on these papers; [1, 2].
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1 Introduction
In July 2012, the standard model Higgs boson was discovered by the collider experiment at
the Large Hadron Collider (LHC) [3, 4]. While the standard model for the particle physics
(SM) [5, 6, 7] explains many phenomena, it is expected that the SM will be extended in some
point of view. We have been able to understand the SM more deeply than before due to the
discovery of the SM Higgs boson. This discovery not only confirms that the SM is the best
to describe the particle phenomena below several TeV scale but also helps us to explore the
physics beyond the SM (BSM). Namely, it is also possible for us to investigate the BSM more
realistically by treating the mass of the SM Higgs as the input parameter. Supersymmetric
grand unified theories (SUSY GUTs) have been investigated as candidates of BSMs.

Supersymmetry (SUSY) has interesting properties. One of them is the improvement of
the gauge coupling unification. There are three gauge interactions in the SM, which are
strong interaction and electroweak interactions. Though it seems that these gauge cou-
plings are unified at very high energy region (1014 ∼ 1017 GeV) without SUSY, they are
unified more precisely in supersymmetric theories at ∼ 1016 GeV [8]. Furthermore, there
exist candidates of the dark matter since the lightest SUSY particles are stable thanks to a
discrete symmetry “R-parity”.

Collider experiments tell us that the observed Higgs boson has the mass of about 125
GeV, which is heavier than the tree-level mass of the lighter neutral Higgs boson in the
minimal supersymmetric standard model (MSSM), and also there is no signal of the super-
partners; especially the masses of superpartners which have the color charge are severely
constrained. High-scale SUSY and Split SUSY scenarios have gotten a lot of attention re-
cently since the 125 GeV Higgs boson is realized by large quantum corrections [9] and the
scalar partners are much heavier than the SM particles. Scalar partners of the SM fermions in
these scenarios, which have the masses of about 102 TeV, are heavier than those in low-scale
SUSY breaking scenarios. On the other hand, the mass scale of gauginos (and also higgsi-
nos in some model) is several TeV. It is pointed out that the gauge coupling unification well
work in spite of the decoupled scalar partners [10, 11]. SUSY flavor problems can be also
cured due to the heavy scalar fermions.

SUSY GUTs well solve some problems and questions in the SM. For instance, the reason
why the electric charge is quantized is explained by unifying the SM gauge group into the
simple group. Also the anomaly cancellation in the SM may be understood in some GUT
models. However, the energy scale of the SUSY GUTs is around 1016GeV which is much
higher than the electroweak scale (∼ 102GeV). We hence can not detect any GUT particles
directly by collider physics.

Though, it is possible to detect some evidence indirectly. Nucleon decay is predicted as a
typical phenomenon in GUTs. Since quarks and leptons are embedded in multiplets which
are transformed properly under the unified gauge group in SUSY GUTs, the baryon number
is no longer a conserved charge.

The minimal SUSY SU(5) GUT is one of such SUSY GUTs, which is the most minimal
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extended theory of the SM. It is well known that the minimal SUSY SU(5) GUT has been
excluded due to predicting too short proton lifetime [12, 13]. This short lifetime is given
rise to by the color-triplet Higgs multiplet which is the SU(5) partner of the MSSM Higgs;
main decay mode is proton to charged K meson and anti-neutrino. Thus, the interactions
which give rise to the terrible nucleon decay have to be suppressed or forbidden by some
mechanism. For instance, the missing-partner model is possible to suppress these opera-
tors by imposing the Peccei-Quinn symmetry [14]. As another example, the theory with
global U(1) R symmetry is able to be evaded from experimental constraints since the ter-
rible interactions are forbidden by this symmetry [15]. The higher-dimensional operators
which are suppressed by Planck mass are also unfavorable interactions in supersymmetric
theories in point of view of nucleon decay. Accordingly, it is supposed to be suppressed by
flavor symmetry, which is referred to as the Froggatt-Nielsen mechanism [16], as reference in
[17]. However, as we will show later, the minimal SUSY SU(5) GUT makes proton lifetime
prediction longer in the high-scale SUSY breaking scenario.

This thesis is organized as follows. In Sec. 2, we review the SM and its success with parti-
cle physics briefly. Then, we introduce supersymmetry as an allowed space-time symmetry
and its breaking mechanisms. In addition, we will minimally extend the SM to the super-
symmetric one. In particular, the most simplest model which explains the recent collider
experimental results, “the high-scale SUSY breaking” is reviewed in the last of this section.
In next section, we will show the introduction of the minimal supersymmetric SU(5) grand
unified theory (SUSY SU(5) GUT). We evaluate the GUT scale mass spectrum by using
threshold corrections in Sec. 4 in the high-scale SUSY breaking scenario. In this section, we
will review matching conditions at some thresholds. Then, our numerical analysis by using
2-loop level renormalization group equations shows that the GUT-scale particles have the
same order (∼ 1016GeV) masses in the high-scale SUSY breaking scenario. In Sec. 5, we will
show that harmful proton decay mode can be evaded from the recent experimental limit in
the high-scale SUSY breaking scenario. In the last section, we will summarize and discuss
our results.
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2 Standard Model and its Supersymmetric Extension
In this section, we review the standard model (SM) and its supersymmetric extensions. First
of all, we introduce the standard model in particle physics. All of the parameters in the SM
are already measured by various experiments. And then, we introduce supersymmetry and
its fascinating properties. If we adopt the supersymmetric (SUSY) theory as an extension of
the SM, SUSY must be broken above electroweak scale since there is no direct evidence by
the collider experiment. We briefly introduce the mechanisms for SUSY breaking. Next we
will introduce the minimal supersymmetric standard model (MSSM) as one of the candidate
of the extension of the SM. The advantage and disadvantage of MSSM are introduced after
that. Finally, we explain the High-scale SUSY breaking scenario briefly.

2.1 The Standard Model in Particle Physics
Gauge invariance is one of the requirements in particle physics. Gauge transformation is
defined as the local phase transformation. If φ is a field belonging to a fundamental repre-
sentation under a gauge group, the gauge transformation for φ is defined as follows∗:

φ → Uφ, (U = eiαaTa
), (2.1.1)

where Ta is the “generator” of gauge symmetry and the index a is summed up. Since this
symmetry is local one, derivative terms of this field are not transformed covariantly under
this transformation. In order to make these terms covariant under gauge transformation, we
must introduce the covariant derivative. The covariant derivative is defined as,

Dµ = ∂µ − igAµ, (Aµ = Aa
µTa), (2.1.2)

where ∂µ is an ordinary differential operator and Aµ is called a gauge field, and g is a gauge
coupling constant. The number of the roman indices of the gauge field Aa

µ is equal to the
number of the generators, namely these gauge fields belong to the adjoint representation
of this gauge group. Under the gauge transformation, these gauge fields are defined as the
fields transforming as follows

Aµ → UAµU−1 +
i
g

U∂µU−1. (2.1.3)

Therefore, the covariant derivative of the field φ is transformed as

Dµφ =∂µφ − igAµφ

→∂µ(Uφ)− ig
[

UAµU−1 +
i
g

U∂µU−1
]

Uφ

=U(Dµφ).

(2.1.4)

∗There is no difference whether the spin-statistics of this field φ is the Bose-Einstein or the Fermi-Dirac.
However, this description is correct in the only case that this field is transformed as the fundamental represen-
tation under this gauge group.
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2.1 The Standard Model in Particle Physics

For the gauge invariance, the kinetic terms for the gauge fields must be written as the gauge
invariant form. However, since the gauge fields itself are not gauge invariant, we need to
find the gauge invariant quantities. A quantity including only the gauge field, called field
strength tensor, is defined as follows:

Fµν = ∂µAν − ∂νAµ − ig[Aµ,Aν]. (2.1.5)

This quantity is transformed under the gauge transformation as

Fµν → UFµνU−1 : Fµν = Fa
µνTa. (2.1.6)

Hence, the gauge invariant quantity must be proportional to trFµνFµν. Generators are nor-
malized as tr(TaTb) = 1

2 δab for the case of the fundamental representation. In order to make
the kinetic terms of gauge fields canonical, the coefficient of the gauge invariant quantity
must be determined as

−1
2

trFµνFµν = −1
4

Fa
µνFaµν. (2.1.7)

The gauge symmetry of the standard model for particle physics is SU(3)C × SU(2)L ×
U(1)Y. Scalar fields and fermion fields in the SM are transformed as the fundamental (anti-
fundamental) representations or trivial representations under this gauge symmetry. The
gauge representations of the bosonic sector of the SM are showed in Table 1. The SM has
explained many experimental observables well.

The SU(3)C symmetry describes “the strong interaction” of which gluons are the cor-
responding gauge boson. There are the fermions called “quarks” which transform as the
fundamental representation under this gauge theory. Quantum Chromodynamics (QCD)
describes the dynamics of gluons and quarks. It is believed that QCD describes the con-
finement of quarks at low-energy since the QCD couplings become more strong and non-
perturbative effects can not be negligible near the cut-off scale ΛQCD ∼ 200MeV. Below this
energy scale, since the description with quarks and gluons is not correct, we must use the
description with mesons and baryons which are called hadrons. Protons and neutrons that
consist of light quarks, up and down quarks, form nuclei. These nucleons with masses of
938 ∼ 940MeV are heavy though the masses of light quarks are about several MeV. This
mass problem was solved for the first time by Y. Nambu and G. Jona-Lasinio [18, 19] by
using analogy with mass-acquirement mechanism of photon in superconductor, which is
called “chiral symmetry breaking”.

The SU(2)L × U(1)Y is the unified gauge group of electroweak (EW) interactions. There
are four gauge bosons corresponding to the generators of the gauge group SU(2)L ×U(1)Y.
Three of these gauge bosons, called the weak bosons, couple to only left-handed fields. The
other is U(1)Y gauge boson which couples to the fields having U(1)Y charge called hyper-
charge Y.
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2.1 The Standard Model in Particle Physics

Table 1: Bosonic sector of the SM

name SU(3)C SU(2)L U(1)Y

Gµ gluon 8 1 0

Wµ W-boson 1 3 0

Bµ B-boson 1 1 0

H Higgs 1 2 1/2

Weak interaction was found in the β decay of particles historically. For instance, it is well
known that neutron decays into proton, electron and anti-neutrino, namely down-quark
decays into up-quark, electron and anti-neutrino at elementally particle level. At the first
time, this decay was described as four-fermi interactions proposed by E. Fermi which are
non-renormalizable operators. Then, by introducing massive vector bosons, this operator is
obtained as effective operator after integrating out massive vector bosons. These massive
vector bosons are the weak bosons.

However gauge bosons must be massless particles due to gauge invariance. Then, the
electroweak gauge group must be broken down to U(1)EM which is electromagnetic gauge
group by spontaneously symmetry breaking (SSB), called the Higgs mechanism∗ [22]. The
SSB of the EW gauge group is caused by the scalar boson which has vacuum expectation
value (VEV), the so-called Higgs boson. The Higgs boson is SU(2)L doublet and has hyper-
charge 1/2. This mechanism is caused by the scalar potential of the Higgs boson as

V(H) = −µ2H†H +
λ

2
(H†H)2. (2.1.8)

where µ2 is positive. The minimum of this potential occurs at

⟨H⟩ = 1√
2

(
0
v

)
, v =

√
2µ2

λ
. (2.1.9)

The VEV of the Higgs field is measured as v = 246.22GeV [24]. This VEV gives rise to the
masses of the gauge bosons through the covariant derivative as follows. The kinetic term of
the Higgs boson is given by

(DµH)†DµH =∂µH†∂µH
+ igH†τaWa

µ∂µH + ig′BµH†∂µH + (h.c.)

+ H†
(

g2τaτbWa
µWbµ + g′2BµBµ + 2gg′τaWa

µBµ
)

H,

(2.1.10)

∗Three research groups; by F.Brout and R.Englert [20]; by P.W.Higgs [21, 22]; and by G.S.Guralnik,
C.R.Hagen, and T.W.B.Kibble [23], investigated this mechanism independently in 1964.
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2.1 The Standard Model in Particle Physics

where Wa
µ and Bµ are the gauge bosons of SU(2)L and U(1)Y; g and g′ are the gauge cou-

plings of SU(2)L and U(1)Y, respectively. τa denotes the generators of SU(2)L. After the
Higgs field obtains VEV, the mass terms of the gauge bosons are written down as

1
4

g2v2W+
µ W−µ +

1
8

v2
√

g2 + g′2ZµZµ ≡ m2
WW+

µ W−µ +
1
2

m2
ZZµZµ, (2.1.11)

where these are the mass eigenstates of the gauge fields defined as

W±
µ =

1√
2
(W1

µ ∓ iW2
µ),

Zµ =
1√

g2 + g′2
(gW3

µ − g′Bµ),

Aµ =
1√

g2 + g′2
(g′W3

µ + gBµ).

(2.1.12)

W±
µ , Zµ and Aµ are charged W-bosons, neutral Z-boson, and photon, respectively. By using

this mass eigenstate of the gauge fields, the covariant derivative for a field belonging to a
fundamental representation of SU(2)L, with U(1)Y charge Y becomes;

Dµ = ∂µ − igAa
µτa − ig′YBµ

= ∂µ − i
g√
2

(
W+

µ τ+ + W−
µ τ−

)
− i

1√
g2 + g′2

Zµ

(
g2τ3 − g′2Y

)
− i

gg′√
g2 + g′2

Aµ

(
τ3 + Y

)
,

(2.1.13)

where τ± ≡ (τ1 ± iτ2)/2. This means the electromagnetic charge is defined as the following
form;

e ≡ gg′√
g2 + g′2

. (2.1.14)

By some experiments, the masses of the weak bosons are confirmed as [24]

mW ≡ 1
2

gv = 80.385 ± 0.015GeV,

mZ ≡ 1
2

√
g2 + g′2v = 91.1876 ± 0.0021GeV.

(2.1.15)

Also, the Weinberg angle defined as

sin2 θW ≡ g′2

g2 + g′2
, (2.1.16)
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2.1 The Standard Model in Particle Physics

Table 2: gauge representation of fermions in the SM

name SU(3)C SU(2)L U(1)Y

QL
left-handed

quark doublet 3 2 1/6

LL
left-handed

lepton doublet 1 2 −1/2

uR
right-handed

up-type quark
3 1 2/3

dR
right-handed

down-type quark
3 1 −1/3

eR
right-handed

charged lepton
1 1 −1

is determined as sin2 θW(mZ) = 0.231. The electromagnetic charge is related to the weak
gauge coupling through the Weinberg angle: e = g sin θW .

Now we expand the Higgs potential around the VEV. We will work in the unitary gauge.

H = U(x)

⎛

⎝
0

v + h(x)√
2

⎞

⎠ (2.1.17)

with U(x) = eiξ(x); ξ(x) ≡ ξa(x)τa. We obtain the Higgs potential after we substitute this
field for Eq. (2.1.8).

V(h) =
1
8

λh4(x) +
1
2

λvh3(x) +
2µ2

2
h2(x)− 1

4
λv4. (2.1.18)

Thus, we obtain the mass of the physical Higgs boson;

m2
h = 2µ2 = λv2 (2.1.19)

Now, let us consider the fermion sector in the SM. There are various fields belonging to
different representations of the standard model gauge group. These fields are summarized
in Table 2. QL is a quark doublet field including left-handed up quark and down quark. LL
is a lepton doublet field including left-handed electron and neutrino. uR, dR, eR are SU(2)L
singlet right-handed up, down and electron field, respectively.

There is the structure called “generation” or “flavor” in the fermion sector. Gauge inter-
actions of these fermions are flavor-blind interactions because these terms are given rise to
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2.1 The Standard Model in Particle Physics

by canonical kinetic terms as iψjD̸ψj where j is flavor index. However, in the SM, since there
is the scalar field, the Higgs field, this flavor symmetry is broken by the Yukawa couplings
as follows.

LYukawa = −Yu
ij ϵabuRiHaQb

Lj + Yd
ijϵabdRi(HC)aQb

Lj + Ye
ijϵabeRi(HC)aLb

Lj, (2.1.20)

where H denotes the Higgs boson, and HC ≡ iσ2H∗ is charge conjugation of H. a, b, . . . and
ϵab denote the indices of SU(2)L and totally anti-symmetric tensor, respectively.

When the Higgs boson obtains the vacuum expectation value, these Yukawa terms be-
come the Dirac mass terms of quarks and leptons after redefining the flavor basis in order
to diagonalize the Yukawa matrices.

Lmass =
v√
2

Yu
ij uRiuLj +

v√
2

Yd
ijdRidLj +

v√
2

Ye
ijeRieLj

=∑
i

(
mui uRiuLi + mdi d

′
Rid

′
Li + mei eRieLi

)
,

(2.1.21)

How many generations are in the standard model? J. W. Cronin, V. L. Fitch and their col-
laborators discovered the evidence of CP violation through decay of KL meson into two
pions [25]. CP violation is caused by a complex phase in couplings. M. Kobayashi and T.
Maskawa revealed that at least three generations were needed to remain complex phases by
field re-definition [26]. The mass and weak eigenstates are related as
⎛

⎝
uL
cL
tL

⎞

⎠

weak

=

⎛

⎝
uL
cL
tL

⎞

⎠

mass

,

⎛

⎝
dL
sL
bL

⎞

⎠

weak

= U

⎛

⎝
d′L
s′L
b′L

⎞

⎠

mass

,

⎛

⎝
eL
µL
τL

⎞

⎠

weak

=

⎛

⎝
eL
µL
τL

⎞

⎠

mass

,

(2.1.22)

where U is called the Cabibbo-Kobayashi-Maskawa(CKM) matrix [26, 27].

UCKM =

⎛

⎝
Uud Uus Uub
Ucd Ucs Ucb
Utd Uts Utb

⎞

⎠ . (2.1.23)

This matrix is parametrized by three real parameters “CKM angle” and one phase factor
“KM phase”.

U =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ , (2.1.24)

where cij = cos θij, sij = sin θij. In Table 3, we summarize the names of the fermions in the
SM.
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2.1 The Standard Model in Particle Physics

Table 3: Generation in the SM

1st 2nd 3rd

up-type Up Charm Top
down-type Down Strange Bottom

charged lepton Electron Muon Tau
neutrino Electron neutrino Muon neutrino Tau neutrino

Combining the above arguments, the Lagrangian for the SM is given as,

LSM =− 1
2

trGµνGµν −
1
2

trWµνWµν −
1
4

BµνBµν

+ ∑
i

(
QLii̸DQLi + LLii̸DLLi + uRii̸DuRi + dRii̸DdRi + eRii̸DeRi

)
+ (DµH)†(DµH)

− Yu
ij ϵabuRiHaQb

Lj + Yd
ijϵabdRi(HC)aQb

Lj + Ye
ijϵabeRi(HC)aLb

Lj

+ µ2H†H − λ

2
(H†H)2.

(2.1.25)

where Gµν, Wµν, and Bµν are the field strength tensors for the SM gauge fields.
Though the SM explains various particle phenomena well, the SM is expected to be ex-

tended for some reasons.

• No candidate of dark matter

• The origin of the neutrino mass

• The baryon asymmetry of the Universe

• Why hypercharge (in other words electric charge) is quantized

• Why does gauge anomaly cancel

The SM does not contain the candidate of dark matter, while it is confirmed that dark
matter accounts for 26.5% of all components of the Universe [28].

Let us consider the neutrino sector in the SM. There is no evidence that there exists a
right handed neutrino up until now. Thus, the Yukawa term of neutrino does not appear in
the SM Lagrangian. From the neutrino oscillation experiments [29, 30, 31, 32, 33], however, it
is confirmed that there are the masses of the neutrinos. Since neutrinos are electrically neu-
tral, the Majorana mass term can be allowed. Then, the flavor eigenstate for the neutrinos is
different from the mass eigenstate for neutrino. When we diagonalize the mass matrix for

9



2.2 Supersymmetry

neutrinos, we obtain the mixing matrix called Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix [34, 35, 36] as similar way as the CKM matrix. The parameters in the PMNS matrix
(in particular, angles of this matrix) and the squared mass differences are revealed or con-
strained by some experiment; the measurement of sin2 2θ13 in Daya Bay [37], the absence
of νµ → ντ is excluded at the 3.4 σ by OPERA experiment [38], the measurement of the so-
lar νe disappearance (SNO [39, 40] and Super-Kamiokande [41]), neutrino oscillation (T2K
[32, 33], K2K [31]), the measurement of |∆m2

23| and sin2 2θ23 via muon neutrino disappear-
ance in MINOS [42], and others [Super-K (atmospheric νµ, ν̄µ) [43], KamLAND (reactor νe
disappearance) [30], MINOS [44], and others].

The standard model does not also explain the baryon asymmetry in our Universe. Later,
new observational result for baryon number density is obtained by Planck Collaboration
[28]

nB
s

=
nb − nb

s
= (8.6 ± 0.1)× 10−11(68%C.L.), (2.1.26)

A.D.Sakharov pointed out that there were three conditions in order to make the baryon
asymmetry which exists in our Universe [45], existence of baryon number violating interac-
tions, existence of C and CP violation and the necessity of the non-equilibrium state in the
history of the Universe.

Since the gauge symmetry of hypercharge is U(1)Y, hypercharges of the SM particles
need not to be quantized. As we had shown, all the SM particles have fractional U(1)Y
charges.

Also, gauge anomalies in the SM are completely cancelled even if we include the gravi-
tational interaction. If the anomaly coefficient defined as

Aabc ≡ tr[ta{tb, tc}], (2.1.27)

equals zero, anomaly is cancelled. There are ‘safe group’ in 4 dimensions. For example, the
gauge groups that have only real or pseudo real representation as SU(2), SO(2N + 1) and
SO(4N) with N ≥ 2 or exceptional groups E8 and others are the safe group. And a few other
algebras that have neither real nor pseudo real representation have some representation for
which anomaly coefficient vanishes, SO(4N + 2) with N ≥ 2 or exceptional group E6 [46].
Unfortunately the anomalies in SU(N) with N ≥ 3 are not cancelled automatically.

In order to explain these questions, the physics beyond the standard model (BSMs) are
expected.

2.2 Supersymmetry
S.R.Coleman and J.Mandula explained that Poincaré generators (including energy-momentum
generators Pµ and Lorentz rotation generators Mµν) and generators of compact Lie groups
were only allowed as generators of the symmetry of S-matrix [47]. This no-go theorem is
called “Coleman-Mandula theorem”
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2.2 Supersymmetry

This theorem is assumed that relativistic local quantum field theory (QFT) is based on
coordinates of spacetime xµ. Therefore, if we introduce fermionic coordinates, this theorem
is not applicable. The extended field theories which are based on both of the fermionic
and bosonic coordinates are able to have additional symmetry called “Supersymmetry”∗.
In particular, in N = 1 SUSY extended theories, all of fields are extended to superfields
which depend on ordinary bosonic coordinates xµ and fermionic coordinates θα, θ̄α̇. Thus
superfields include both of bosonic component fields and fermionic ones.

In general, the unitary transformation of translation including the direction to the super-
space is defined as:

G(x, θ, θ†) ≡ exp
[
i(xµP̂µ + θQ̂ + θ†Q̂†)

]
. (2.2.1)

where we define the translation operator in a superspace direction as follows:

Q̂α ≡ i
∂

∂θα − (σµθ†)α∂µ, Q̂α ≡ i
∂

∂θα
− (θ†σµ)α∂µ,

Q̂†α̇ ≡ i
∂

∂θ†
α̇

− (σµθ)α̇∂µ, Q̂†
α̇ ≡ i

∂

∂θ†α̇
− (θσµ)α̇∂µ.

(2.2.2)

Now, we define the supersymmetric transformation as the translation in a superspace direc-
tion, and then, we obtain the supersymmetric transformation of the superfield S(xµ, θ, θ†),

√
2δϵS ≡ −i(ϵQ̂ + ϵ†Q̂†)S(xµ, θ, θ†)

=

[
ϵα ∂

∂θα + ϵ†
α̇

∂

∂θ†
α̇

+ i(ϵσµθ† + ϵ†σµθ)∂µ

]
S(xµ, θ, θ†)

= S(xµ + i(ϵσµθ† + ϵ†σµθ), θ + ϵ, θ† + ϵ†)− S(xµ, θ, θ†).

(2.2.3)

In supersymmetric theories, matter fields and gauge fields of the standard model are
embedded in the chiral(anti-chiral) superfields and vector superfields, respectively. Chiral
(anti-chiral) superfields Φ (Φ̄) are constrained as

D̄α̇Φ = 0, (DαΦ† = 0), (2.2.4)

where D(D̄) is chiral(anti-chiral) covariant derivative defined as:

Dα ≡ ∂

∂θα − i(σµθ†)α∂µ, Dα ≡ ∂

∂θα
+ i(θ†σµ)α∂µ,

D†α̇ ≡ ∂

∂θ†
α̇

− i(σµθ)α̇∂µ, D†
α̇ ≡ ∂

∂θ†α̇
+ i(θσµ)α̇∂µ.

(2.2.5)

∗Supersymmetry algebra is given in Appendix B.1.
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2.2 Supersymmetry

Vector superfields V are real superfields V = V†. A chiral superfield is divided into compo-
nent fields as

Φ(x, θ, θ†) =φ(x)− iθ†σ̄µθ∂µφ(x)− 1
4

θ2θ†2∂µ∂µφ(x)

+ θψ(x) +
i√
2

θ2θ†σ̄µ∂µψ(x) + θ2F(x),
(2.2.6)

where φ(x) and ψ(x) are a x-dependent complex scalar field and a Weyl fermion field, re-
spectively. F(x) is an auxiliary field which vanishes by using equations of motion and is
needed to match the degrees of freedom both of bosonic and fermionic ones under off-shell
condition.

Non-abelian supergauge transformation for chiral (anti-chiral) superfields is defined as∗

Φ → Φ′ = eiΛΦ, Φ† → (Φ†)′ = Φ†e−iΛ†
, (2.2.7)

where Λ = ΛaTa, Λ† = Λ†aTa. Λa, Λa† are chiral and anti-chiral (superspace dependent)
parameter, respectively. Ta is generator of the non-abelian gauge group. Gauge vector su-
perfields (V = VaTa) are transformed as follows;

eV → (eV)′ = eiΛ†
eVe−iΛ. (2.2.8)

In terms of the supergauge transformation of vector superfield, the infinitesimal supergauge
transformation is obtained as follows:

V → V + LV/2 ·
[
−i(Λ + Λ†) + cothLV/2 · i(Λ† − Λ)

]

= V − i
2

[
V, Λ + Λ†

]
− i(Λ − Λ†) + i

∞

∑
n=1

Bn
(2n)!

[
V,
[
V, · · ·

[
V, Λ† − Λ

]
· · ·
]]

,
(2.2.9)

where LA · B denotes the Lie bracket defined as

LA · B = [A, B], (2.2.10)

and Bn is the Bernoulli numbers defined by

x
ex − 1

=
∞

∑
n=0

Bn
n!

xn. (2.2.11)

∗Of course, Φ (Φ†) belongs to fundamental (anti-fundamental) representation.
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2.2 Supersymmetry

Thus, the gauge invariant action is obtained from the product of Φ and Φ̃ = Φ†eV . Gauge
fields in Yang-Mills theories are embedded in the vector superfield:

V(x, θ, θ†) =a + θξ + θ†ξ† + θ2b + θ†2b∗ + θσµθ† Aµ

+ θ†2θ

(
λ +

i
2

σµ∂µξ†
)
+ θ2θ†

(
λ† +

i
2

σ̄µ∂µξ

)
+ θ2θ†2

(
1
2

D +
1
4

∂µ∂µa
)

.

(2.2.12)

By using the supergauge transformation Λ† −Λ defined as Eq. (2.2.9), we reduce the number
of the component fields of vector superfield:

VWZ(x, θ, θ†) = θ†σµθAµ(x) + θ†2θλ(x) + θ2θ†λ†(x) +
1
2

θ2θ†2D(x), (2.2.13)

Aµ(x) and λ(x), λ†(x) are gauge fields and gaugino fields, respectively. D(x) is an auxiliary
field which has no kinetic term. In non-abelian supersymmetric Yang-Mills (SUSY YM)
theories, V, Λ, and Λ† denote the summation of the product of superfields and the generator
of gauge group i.e. V = 2g ∑a VaTa, Λ = ∑a ΛaTa and Λ† = ∑a Λ†aTa where g is the
gauge coupling of SUSY YM theory. Note that after the supergauge fixing which is called
“Wess-Zumino gauge”, we are able to use ordinary gauge transformation. In Eq. (2.2.9),
we still have the freedom to do ordinary gauge transformation. When we set Λ = Λ†, this
supergauge transformation becomes the ordinary gauge transformation as:

V → V − i[V, Λ], Aa
µ → Aa

µ + g f abc Ab
µΛc. (2.2.14)

The kinetic term for gauge fields is given by constructing the field-strength chiral super-
field as follows:

Wα = −1
4

D2
(e−V DαeV). (2.2.15)

This superfield obviously satisfies chiral constraint. This is, of course, the summation of
the product of superfields and generators of gauge group in non-abelian SUSY YM (Wα =
2g ∑a W a

α Ta). The field-strength chiral superfield transforms

Wα → W ′
α = eiΛWαe−iΛ, (2.2.16)

under a supergauge transformation. Therefore, the gauge invariant kinetic term for gauge
field is given by

∫
d2θ

1
4kg2 TrWαWα = DaDa + 2iλaσµ∇µλa† − 1

2
FaµνFa

µν +
i
4

ϵµνρσFa
µνFa

ρσ, (2.2.17)
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2.3 SUSY Breaking

where generators are normalized as TrTaTb = kδab. The gauge coupling g and CP-violating
angle Θ are combined into the holomorphic coupling defined as

τa ≡
1
g2 − i

Θ
8π2 . (2.2.18)

The kinetic term is obtained as

1
16k

∫
d2θτaTrWαWα + h.c.. (2.2.19)

In general the gauge covariant kinetic terms of matter fields are given rise to by the Käh-
ler potential K(Φ̃, Φ) which is composed by the product of chiral superfields (Φ) and anti-
chiral superfields (Φ̃ ≡ Φ†eV). The interaction terms including such as Yukawa terms are
generated from superpotential, W(Φ). The general Lagrangian for the non-renormalizable
theory is given as

L =
∫

d4θ K(Φ̃, Φ) +

[∫
d2θ W(Φ) + h.c.

]
+

[∫
d2θ

1
16

τa fab(Φ)W aαW b
α + h.c.

]
. (2.2.20)

where f (Φ) is holomorphic function of chiral superfields called “gauge kinetic function”. In
the renormalizable theory, the forms of these functions are determined as follows:

K(Φ̃, Φ) = Φ̃iΦi,

W(Φ) =
1
2

MijΦiΦj +
1
3!

yijkΦiΦjΦk,

fab(Φ) = δab,

(2.2.21)

where i, j, . . . are labels of chiral(anti-chiral) superfields.
In the supersymmetric theories, there is a special property. This is “non-renormalization

theorem”. This theorem ensures that there is no vertex correction for the interaction which
is generated from superpotential[48].

2.3 SUSY Breaking
Supersymmetric extensions of the standard model are fascinating in points of some phe-
nomenological aspects. However, superpartners of the SM particles have not been directly
discovered yet at any collider experiments. In particular, masses of SUSY colored particles
have been constrained more strictly than before. At LHC experiments, lower bounds for
masses of colored particles are around 1TeV [49].

Considering this fact, supersymmetry should be broken above electroweak scale. In gen-
eral, effects of SUSY breaking can appear in a mass difference between superpartners, and
also in a difference between the interactions which are associated with each other by super-
symmetry.
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2.3 SUSY Breaking

In the supersymmetric algebra, generators of SUSY and translation are related as ex-
pressed in Appendix B.1.

{Qα, Q†
β̇
} = 2iσµ

αβ̇
Pµ, (2.3.1)

where Qα, Q†
β̇

and Pµ are generators of SUSY and translation, respectively. Since Hamilto-
nian is the zeroth component of the translation generator, we have

H =
1
4

(
Q1Q†

1̇ + Q2Q†
2̇ + Q†

1̇Q1 + Q†
2̇Q2

)
. (2.3.2)

That is, supersymmetric vacuum |0⟩ satisfies the following equality.

⟨0|H|0⟩ = 1
4 ∑

all Q
|Q |0⟩|2 = 0 (2.3.3)

Thus, in supersymmetric theories, the minimum of potential should be zero. If the mini-
mum of potential is not zero, SUSY is obviously broken. In supersymmetric theories, scalar
potential is given as

V(φ) = ∑
i

FiFi∗ +
1
2 ∑

a
DaDa

= ∑
i

∣∣∣∣
∂W
∂Φi

∣∣∣∣
Φ=φ

+
1
2 ∑

a
(φi∗Taφi)

2,
(2.3.4)

where the first and second terms are obtained from F- and D-terms, respectively. This means
that the breaking of supersymmetry is related to the non-zero vacuum expectation values
(VEVs) of auxiliary fields.

While SUSY must be broken at electroweak scale at least, quadratic divergences such as
quantum corrections for mass terms of scalar fields are unfavorable for introducing super-
symmetry. Thus, SUSY must be broken softly, which means that there is no dimensionless
coupling in SUSY breaking sector.

One of the ideas for soft SUSY breaking is that our world is divided into visible sector
and hidden sectors∗. In visible sector, we live and we observe all of particle phenomena.
On the other hand, in hidden sector, supersymmetry is dynamically broken and its effect is
communicated by the fields which live in both of visible and hidden sector. These fields are
called “messengers”.

∗There is a convenient method in order to obtain the soft parameters [50, 51, 52]. At first we extend all
of the coupling constants to the spurion superfields. If the higher-components of these spurion superfields
have non-zero VEVs, then SUSY is softly breaking and the soft parameters are proportional to VEVs of these
higher-components.
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2.3 SUSY Breaking

The gravity interaction is one of candidates of messengers. This mediation mechanism is
called “Planck-Mediated SUSY Breaking”(PMSB) [53, 54, 55, 56, 57, 58]. In this mechanism,
SUSY breaking is mediated through Planck-suppressed higher-dimensional operators such
as

∫
d4θ

XX†

M2
Pl

Φ†Φ, (2.3.5)

where MPl is the Planck-mass (∼ 1018GeV). If higher-components of X have VEVs, scalar
component of Φ obtains soft mass which is different from mass of fermion component of Φ.
Similarly, gaugino mass term is obtained from higher-dimensional operator as the following
form.

1
16

∫
d2θ

X
MPl

W aW b, (2.3.6)

We can find that a typical scale of soft SUSY breaking is obtained as Msoft = ⟨FX⟩ /MPl in
this mechanism where ⟨FX⟩ is the VEV of the F-term of X.

One of other possibilities of soft SUSY breaking mechanism is “Anomaly-Mediated SUSY
Breaking” (AMSB)[59, 60]. In this model, SUSY breaking is given rise to through supercon-
formal anomaly. We will explain details of this mechanism in Appendix C.2. Let us consider
properties of this model. In this model, gaugino mass terms are induced with 1-loop sup-
pression since these soft parameters are obtained through the breaking of scale symmetry,
which means that these parameters must depend on beta functions and anomalous dimen-
sions. For example, we can obtain the masses of gauginos which are superpartners of the
gauge bosons as follows:

Ma = −β(ga)
ga

m3/2, (2.3.7)

where a is the label of the gauge group and β(ga) is β function of the gauge coupling ga. We
have the masses of the MSSM gaugino including the contribution from the Higgs-higgsino
loop.

M1 =
b1g2

1
16π2

[
m3/2 +

µH
11

sin 2β
m2

A
µ2

H − m2
A

ln
µ2

H
m2

A

]
,

M2 =
b2g2

2
16π2

[
m3/2 + µH sin 2β

m2
A

µ2
H − m2

A
ln

µ2
H

m2
A

]
,

M3 =
b3g2

3
16π2 m3/2,

(2.3.8)

where µH and mA are the masses of the higgsino and the pseudo-scalar Higgs, respectively.
m3/2 is the mass of gravitino.

16



2.4 The Minimal Supersymmetric Standard Model

2.4 The Minimal Supersymmetric Standard Model
The supersymmetric extension of the standard model [61, 62, 63, 64] is the one of the BSMs.
Supersymmetry for the particle physics requires that the partner particles (superpartner) of
the SM whose difference is only spin-statistics of these particles.

Now, we explain the minimal supersymmetric extension of the standard model (the min-
imal supersymmetric standard model: MSSM). To make Yukawa terms supersymmetric, we
must assign chiral superfields as Table 4. Superpotential cannot include both of chiral su-

Table 4: Chiral superfields in MSSM

SU(3)C SU(2)L U(1)Y Z2R

Q 3 2 1/6 -1

L 1 2 −1/2 -1

UC 3 1 −2/3 -1

DC 3 1 1/3 -1

EC 1 1 1 -1

Hu 1 2 1/2 1

Hd 1 2 −1/2 1

perfield and its complex conjugate (anti-chiral superfield). Thus, two Higgs doublets are
needed to be introduced in supersymmetric theories. One of two is coupled to up-type
quark superfield, and another is coupled to down-type and electron-type superfields.

WYukawa = Yu
ij HuUC

i QLj − Yd
ij HdDC

i QLj − Ye
ijHdEC

i LLj, (2.4.1)

where i, j, . . . are flavor indices. In this notation, the indices of SU(3)C and SU(2)L are not
written down explicitly. In particular the indices of SU(2)L are contracted by anti-symmetric
tensor such as the case of the SM Lagrangian.

If we assume a Z2-parity called “R-parity” invariance which assigns SM particles and
these superpartners to parity-even and parity-odd, respectively, as Table 4, the lightest su-
perpartner can be a dark mater candidate. Furthermore, the baryon number violating and
the lepton number violating operators as

W∆L=1 =
1
2

λijkLiLjEC
k + λ′ijkLiQjDC

k + µiLiHu,

W∆B=1 = λ
ijk
B UC

i DC
j DC

k ,
(2.4.2)
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2.4 The Minimal Supersymmetric Standard Model

are forbidden by this parity. Although these superpotentials generate the most terrible nu-
cleon decay interactions induced by exchanging sfermions at tree level, these are prohibited
by this parity.

Since mass terms of the standard model fermions appear after electroweak symmetry
breaking, the supersymmetric mass terms are absent in superpotential of MSSM. Only the
supersymmetric mass term for Higgs superfields is allowed as

Wmass = µHuHd. (2.4.3)

The full superpotential for MSSM is obtained from the summation of above two superpo-
tentials.

WMSSM = Wmass + WYukawa (2.4.4)

This superpotential generates a lot of new interactions in addition to the Yukawa interac-
tions in the standard model Lagrangian.

In this minimal extension of the standard model, the scalar potential of Higgs boson is
given rise to by supersymmetric interactions and soft breaking terms as the following form:

V =(|µ|2 + m2
Hu
)|H0

u|2 + (|µ|2 + m2
Hd
)|H0

d |
2

− [bµH0
uH0

d + h.c.] +
1
8
(g2 + g′2)(|H0

u|2 − |H0
d |

2)2,
(2.4.5)

where there are two neutral Higgs components. Namely, by taking the linear combination
of these scalar fields as

H0
u = vu +

1√
2

h0 sin β +
1√
2

H0 cos β + . . . ,

H0
d = vd +

1√
2

h0 cos β +
1√
2

H0 sin β + . . . .
(2.4.6)

where h0 and H0 are neutral Higgs bosons. In particular, the lighter Higgs boson h0 is
identified with the SM Higgs boson. the quartic coupling of the SM Higgs in scalar potential
is obtained as

λ =
1
4
(g2 + g′2) cos2 2β, (2.4.7)

at tree-level and the mass of the SM Higgs boson is given by

m2
h0 =

1
2

(
m2

A0 + m2
Z −

√
(m2

A0 − m2
Z)

2 + 4m2
Zm2

A0 sin2 2β

)
, (2.4.8)
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2.4 The Minimal Supersymmetric Standard Model

where mA0 is the mass of the CP-odd neutral Higgs defined as m2
A0 = 2bµ/ sin 2β. This tells

us that the Higgs mass is bounded from above as

mh0 < mZ| cos 2β|. (2.4.9)

The mass of the observed Higgs boson is measured as 125.9 ± 0.4GeV, which is larger than
the mass of Z-boson. This means that large quantum corrections to the mass of the SM Higgs
boson are needed in order to realize the observed mass.

There is another problem called the µ problem which is a kind of fine-tuning problems.
In the MSSM, dimensionful parameter µ in vector-like mass term is supersymmetric one.
Thus, µ has the same order of the cutoff scale of MSSM or above. On the other hands, the
soft masses m2

Hu
, m2

Hd
have the same order of the SUSY breaking scale. These parameters

must be cancelled and generate proper negative squared mass in order that the electroweak
symmetry breaking must be given rise to. Though, there is no reason why the supersym-
metric dimensionful parameter has the same order of the SUSY breaking scale. This means
that there may be some mechanism to generate the µ term near the SUSY breaking scale.
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2.5 High-Scale SUSY breaking

Figure 1: Higgs mass in high-scale SUSY scenario. mh = 125.9 ± 0.4GeV, αS(mZ) =
0.118 ± 0.007 and pole mass mt = 173.07 ± 0.6 ± 0.8 GeV. The center line show the region
the observational center value is realized. Error bar indicate the input error of Higgs mass,
strong coupling and top quark pole mass. We use RGEs for quartic coupling and Yukawa
coupling are at 2-loop level; and threshold correction for quartic coupling is at 1-loop level.
In this numerical calculation, we set A-terms to be 0.

2.5 High-Scale SUSY breaking
Discovery of the SM Higgs boson tells us that the observed mass of the SM Higgs boson is
larger than the prediction in MSSM at tree level. We have two possibilities to make mass of
the SM Higgs heavy; one of them is to raise the quartic coupling constant of Higgs potential
at tree-level, another is large quantum corrections to the mass of Higgs boson. The quar-
tic coupling at tree-level can be enlarged in the next-to minimal supersymmetric standard
model (NMSSM)∗. Large quantum corrections can be given rise to as follows:

• Extra matters which are gauge singlet fields or vector-like matters [65],

• SUSY breaking scale is higher than several TeV [9, 66],

• Large A-terms [65].
∗In NMSSM, µ term is given rise to by VEV of the new gauge-singlet superfield S. The scalar component of

S mixes with CP-even Higgs h0 and H0.
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2.5 High-Scale SUSY breaking

Figure 2: Mass spectrum in High-scale SUSY breaking scenario

High-scale supersymmetry is one of these models where the observed mass of Higgs
boson can be realized [9, 66]†. The region where the observed Higgs boson is realized is
shown in Fig. 1. This is the most simplest and fascinating phenomenological model. Since
the breaking scale can be larger than several TeV, higher dimensional operators which cause
SUSY flavor problems can be sufficiently suppressed by these mass scales.

In this model, we only assume that there is no gauge singlet field in SUSY breaking
sector. The mass terms of sfermions are given rise to by higher-dimensional operators as the
following form.

∫
d4θ

XX†

Λ2 Φ†Φ, (2.5.1)

where X lives in hidden sector and has non-zero VEVs of higher-component. However,
the gauge invariant action does not contain higher-dimensional operators which generate
gaugino mass terms and A-terms as,

∫
d2θ

X
Λ
W aW b,

∫
d2θ

X
Λ

λijkΦiΦjΦk. (2.5.2)

The leading terms for gaugino masses and A-terms are obtained through AMSB in this
model. Thus, the masses of gauginos will be proportional to the mass scale of the gravitino
with 1-loop suppression. The mass spectrum will be split among heavy scalar particles,
gravitino and gauginos.

The mass scale of the higgsino depends on the details of models. In some models, the hig-
gsino mass can be the same order as gravitino or SUSY breaking scale discussed by [66, 68]∗.

†Recently J. Feng and his collaborators estimated the mass of the Higgs boson at three-loop level [67].
∗In these references, arguments about higgsino mass (or µ-problem) are based on a mechanism called

“Giudice-Masiero mechanism”[69].
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2.5 High-Scale SUSY breaking

On the other hand, in the other models, low-scale µ-term is given rise to by various ways.
One is that higher dimensional operator obtained from R-symmetry breaking mechanism.
When we assign R-charge 2 to c, R-invariant term generating higgsino mass is given as the
following form:

∫
d4θ

XX†

Λ5 cDαHuDαHd (2.5.3)

generates µ-term [70]. Another is caused by Giudice-Masiero mechanism which is imposed
R-symmetry and its breaking at the energy lower than Planck scale. Anyway, we treat the
mass scale of higgsino as a parameter when we carry out some calculation.

Combining all information as mentioned above, the mass spectrum of the simple model
based on the high-scale SUSY breaking is obtained as in Fig. 2.

• All the masses of scalar components of chiral supermultiplet are set to be above 102TeV.

• And also we set a gravitino to be 102TeV, and gauginos to be several TeV through
AMSB.

• The mass of higgsinos is treated as a model parameter.
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3 Minimal SUSY SU(5) Grand Unified Theory
Grand unified theories (GUTs) explain some questions in the SM. In GUTs, the SM gauge
group is embedded in a large and a simple group, for examples SU(5), SO(10), and E6. This
means that running gauge couplings can be unified at GUT scale, MGUT ∼ 1016∼17GeV.
Since the SM gauge group is unified as a simple group, after the symmetry breaking of
unified gauge group, the U(1)Y charge of particles is quantized. The cancellation of the
gauge anomaly can be expressed because of unified gauge group.

GUT was first investigated by H. Georgi and S. L. Glashow in 1974 [71]. They identified
the minimal unified gauge group with SU(5) by imposing that the rank of unified gauge
group is four and this gauge group has complex representation. In SU(5) GUT, the anomaly
coefficient defined in Eq. (2.1.27) of a 5 representation is equivalent to that of a 10 representa-
tion. In the SU(5) GUT, since matter fields of the SM are embedded in 5⊕ 10 representation,
gauge anomaly is completely cancelled. Then, the supersymmetric extension of the mini-
mal SU(5) GUT was independently investigated by N. Sakai [72] and S. Dimopoulos and
H. Georgi [73]. As mentioned above, in the supersymmetric extension of grand unified the-
ories, it is well-known that gauge coupling unification can be improved as in Fig. 3 [8].

In this section, we briefly review the minimal supersymmetric SU(5) grand unified the-
ory (the minimal SUSY SU(5) GUT).

3.1 Field Contents
The MSSM superfields are embedded in the SU(5) symmetric superfields. First, the left-
handed quark doublet Qar, the charge conjugated right-handed up-type quark UC

a , and the
charge conjugated right-handed charged lepton EC are embedded in the anti-symmetric 10
dimensional representation chiral superfield Ψ:

Ψαβ(10) =
1√
2

(
ϵabcUC

c Qar

−Qsb ϵsrEC

)
, (3.1.1)

α, β, · · · = 1, 2, · · · 5 represent the SU(5) indices. The roman indices (a, b, c, · · · = 1, 2, 3) de-
note the SU(3)C indices and the roman indices (r, s, · · · = 1, 2) denote the SU(2)L indices.
The other MSSM chiral superfields are embedded into the anti-fundamental (5̄) representa-
tion chiral supermultiplet Φ.

Φα(5̄) =
(

DC
a

ϵrsLs

)
, (3.1.2)

DC
a is the charge-conjugated right-handed down-type quark. Ls is the left-handed lepton

doublet. Two Higgs doublets in MSSM, Hu and Hd, are embedded in chiral superfields
belonging to a pair of 5 and 5̄ representation of SU(5) with the color-triplet Higgs multiplets
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3.1 Field Contents

Figure 3: The unification of the gauge couplings. Blue line represent the non-SUSY scenario.
Red line corresponds to the case that all of the sparticles are included at the electroweak
scale. We use the 1-loop RGEs for drawing this figure. This figure shows that the unification
is improved in the SUSY GUTs.

HC and HC.

H(5) =
(

Ha
C

Hr
u

)
, H(5̄) =

(
HCa

ϵrsHs
d

)
, (3.1.3)

There exists the additional Higgs field which breaks unified gauge group up to the standard
model gauge group; the so-called adjoint Higgs superfield Σ. Σ transforms as the adjoint
representation under the SU(5) gauge symmetry.

Σα
β(24) =

(
Σ8 Σ(3,2)

Σ(3∗,2) Σ3

)
+

1√
2

1√
30

(
2 0
0 −3

)
Σ24 (3.1.4)

Now, we will check the SU(5) gauge transformation of each field. U = exp(iθaTa) is a
unitary transformation of SU(5). Ta are the generators of SU(5), and θa are transformation
parameters. Each field transforms as follows

Φα → ΦβU† β
α ,

Ψαβ → Uα
γUβ

δΨγδ,

Σα
β → (UΣU†)α

β.

(3.1.5)
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3.1 Field Contents

The infinitesimal gauge transformation for these field is obtained as:

Φα → Φα − iθaΦβ(Ta)β
α,

Ψαβ → Ψαβ + iθa
{
(Ta)α

γΨγβ + (Ta)β
γΨαγ

}
,

Σα
β → Σα

β + iθa [Ta, Σ]αβ .

(3.1.6)

Let us consider the case that the adjoint Higgs superfield breaks the unified gauge group
as SU(5) → SU(3)C × SU(2)L × U(1)Y by the vacuum expectation value (VEV). Thus the
adjoint Higgs superfield must have the VEV which is invariant under the SM gauge group.
The adjoint Higgs superfield Σ must satisfy the traceless condition, that is, TrΣ = 0. Thus,
the VEV of the adjoint Higgs must have the form as:

⟨Σ⟩ = V

⎛

⎜⎜⎜⎜⎝

2
2

2
−3

−3

⎞

⎟⎟⎟⎟⎠
. (3.1.7)

Let us consider differences between the unified U(1) charge and the U(1)Y hypercharge.
The generator of the unified U(1) gauge group is normalized as tr(TU(1)TU(1)) = 1/2 and
has the form of

TU(1) = − 1
2
√

15

⎛

⎜⎜⎜⎜⎝

2
2

2
−3

−3

⎞

⎟⎟⎟⎟⎠
. (3.1.8)

The hypercharge generator TY is proportional to TU(1). We determine this constant of pro-
portionality in order to be consistent with the hypercharges of MSSM fields.

TU(1) =

√
3
5

TY (3.1.9)

Finally, the canonically normalized kinetic terms∗ are obtained from the gauge invariant
Kähler potential which is defined as

K = Φα

(
e−2gV5

)α

β
Φ∗β + Ψ∗

αβ

(
e2gV5

)α

δ

(
e2gV5

)β

γ
Ψγδ + 2Σα

β

(
e2gV5

)β

γ
Σγ

δ

(
e−2gV5

)δ

α
.

(3.1.10)

∗These fields are normalized as SU(5) fields but not as MSSM superfields.
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3.1 Field Contents

Table 5: SU(5) superfields decomposition

SU(5) (SU(3)C, SU(2)L)Y

Φ 5 (3, 1)1/3 ⊕ (1, 2)−1/2

Ψ 10 (3, 2)1/6 ⊕ (3, 1)−2/3 ⊕ (1, 1)1

Σ 24 (8, 1)0 ⊕ (1, 3)0 ⊕ (3, 2)−5/6 ⊕ (3, 2)5/6 ⊕ (1, 1)0

H 5 (3, 1)−1/3 ⊕ (1, 2)1/2

H 5 (3, 1)1/3 ⊕ (1, 2)−1/2

V5 24 (8, 1)0 ⊕ (1, 3)0 ⊕ (3, 2)−5/6 ⊕ (3, 2)5/6 ⊕ (1, 1)0

where V5 and g5 are the vector superfield and the gauge coupling constant of SU(5), respec-
tively. The gauge (vector) superfields are defined as

V5 =
1√
2

⎛

⎜⎜⎝
Ga

b −
2√
30

Bδa
b X†a

r

Xs
b Ws

r +
3√
30

Bδs
r

⎞

⎟⎟⎠ , (3.1.11)

where Ga
b, Ws

r, and B are the vector superfields for SU(3)C × SU(2)L × U(1)Y gauge fields.
These gauge fields are defined as;

1√
2

Ga
b = GA(TA

3 )a
b,

1√
2

Ws
r = WA(TA

2 )s
r, (3.1.12)

where TA
2 and TA

3 denote the generators of SU(2)L and SU(3)C, respectively. The so-called
X-type gauge superfields (X and X†) are the additional fields in the SU(5) GUT.

We summarize the field contents of the SU(5) GUT and the decomposition of these fields
to the SM gauge representations in Table 5.
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3.2 Superpotential

3.2 Superpotential
The general renormalizable superpotential of SU(5) GUT is written as

W =
f
3

TrΣ3 +
m
2

TrΣ2 + λHα(Σα
β + aδα

β)Hβ

+
hij

4
ϵαβγδϵΨαβ

i Ψγδ
j Hϵ +

√
2 f ijΨαβ

i ΦjαHβ

+ ∑
i

ΦiαHα + cijkΨαβ
i ΦjαΦkβ + cijΨαβ

i HαHβ.

(3.2.1)

The first line describes the self-interaction terms of the adjoint Higgs superfield and the
interaction terms of the adjoint Higgs superfield and 5, 5 Higgs superfield. In the second
line, coefficients of these terms are determined in order to realize the MSSM Yukawa terms
in terms of the canonically normalized MSSM superfields. The third line describes the other
gauge invariant terms.

We impose the R-parity invariance to our Lagrangian. The transformation properties of
each supermultiplet under the R-parity are defined as below,

Φ(x, θ) → −Φ(x,−θ) for the matter chiral superfield, (3.2.2)
Φ(x, θ) → Φ(x,−θ) for the Higgs chiral superfield. (3.2.3)

This transformation property means even parity for SM particles and odd parity for their
superpartners. By imposing the R-parity invariance, all of the terms in the third line in
Eq. (3.2.1) are vanished.

Now, we consider the relations between each coefficients in the superpotential. If the
adjoint higgs has the VEV Eq. (3.1.7), the adjoint higgs sector becomes as follows.

WΣ =
f
3

TrΣ3 +
m
2

TrΣ2 = 30
(
− f

3
V3 +

mV2

2

)
, (3.2.4)

In order not to break supersymmetry in the GUT breaking vacuum, the minimum of this
superpotential must be zero. For this condition, these coefficients, f and m, must satisfy an
equality obtained as:

∂WΣ
∂V

= 30(− f V2 + mV) = 0 ⇔ m = f V. (3.2.5)

After the adjoint Higgs boson obtains the VEV, the SU(5) Higgs boson and the adjoint higgs
boson sector become

Wh−Σ =λHα(Σα
β + aδα

β)Hβ

−→λHα

⎛

⎜⎜⎜⎜⎝

2V + a
2V + a

2V + a
−3V + a

−3V + a

⎞

⎟⎟⎟⎟⎠
Hβ.

(3.2.6)
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3.2 Superpotential

Since V has the order of GUT scale (∼ 1016GeV), we assume a = 3V in order that the mass
term of the SM higgs is equal to 0. This assumption is the so-called doublet-triplet splitting
problem: there is no reason why the color-triplet Higgs multiplets are much heavier than
the MSSM Higgs doublets. Finally the superpotential above the GUT scale is written down
as:

W =
f
3

TrΣ3 +
f V
2

TrΣ2 + λHα(Σα
β + 3Vδα

β)Hβ

+
hij

4
ϵαβγδϵΨαβ

i Ψγδ
j Hϵ +

√
2 f ijΨαβ

i ΦjαHβ.
(3.2.7)

Now, we consider the degrees of freedom of Yukawa couplings in SU(5) GUTs. hij is in
C6 parameter space since this is symmetric matrix. And f ij is in C9 parameter space. On
the other hand, if there is no Yukawa term, we have degrees of freedom of the choice of the
flavor basis of Φ, Ψ. This is global U(3)× U(3) flavor symmetry, namely there are 9× 2 = 18
degrees of freedom of field re-definition.

Therefore, the physical degrees of freedom of the Yukawa couplings is (6 + 9)× 2 − 9 ×
2 = 12. We can reparametrize these Yukawa matrices Yij = hij + fij by using U(3)× U(3)
flavor symmetry. Y is transformed by using flavor rotation as follows:

eiα1eiβ1µTµ
Yeiβ2µTµ

eiα2 , (3.2.8)

where αi, βiµ(i = 1, 2; µ = 1, 2, · · · , 8) are real parameters, and Tµ are the Gell-Mann matri-
ces.

After using flavor rotations, we make hij diagonal and only f ij having off-diagonal ele-
ments.

hij = (hieiϕi)δij, (3.2.9)
f ij = V∗

ij f j. (3.2.10)

Since hij and f ij are Yukawa matrices, Vij should become CKM matrix after hij is diagonal-
ized. Vij has four parameters (three CKM angles and KM complex phase). hi, f i are real
parameters (tag is, there are six parameters) corresponding to masses of up-type quarks,
charged leptons, and down-type quarks, respectively. Besides the SM parameters, there
are extra degrees of freedom which are interpreted as additional phases. These additional
phases can be combined with the diagonal elements in hij matrix or f ij matrix. Since there
are two additional phase parameters, we impose that ϕ1 + ϕ2 + ϕ3 = 0. Thus, in this
parametrization, there are 4 + 6 + (3 − 1) = 12 parameters. Under this re-parametrization,
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3.3 Mass Spectrum of GUT Particles

the mass eigenstates of matter multiplet are obtained as:

Ψi ∋ tQi ≡ (Ui, D′
i) = (Ui, VijDj),

Ψi ∋ e−iϕiUC
i ,

Ψi ∋ VijEC
j ,

Φi ∋ DC
i ,

Φi ∋ tLi ≡ (Ni, Ei).

(3.2.11)

Finally, let us decompose the Yukawa terms in the minimal SUSY SU(5) GUT into the
Yukawa terms in MSSM.

WYukawa =
hij

4
ϵαβγδϵΨαβ

i Ψγδ
j Hϵ +

√
2 f ijΨαβ

i ΦjαHβ

= hiVijUC
iaEC

j Ha
C − 1

2
hieiϕi ϵrsϵabc(Qra

i Qsb
i )Hc

C + hiϵrsUC
ia(Q

ra
i Hs

u)

+ V∗
ij f je−iϕi ϵabcUC

iaDC
jbHCc − V∗

ij f jϵrsQra
i Ls

j HCa

+ V∗
ij f jϵrsQra

i Hs
dDC

ja + f iϵrsEC
i Lr

i Hs
d

(3.2.12)

where a, b, c, . . . are color indices, r, s, . . . are SU(2)L indices, and i, j, . . . are indices of gen-
erations.

3.3 Mass Spectrum of GUT Particles
After the adjoint Higgs boson has the VEV which breaks the grand unified gauge group to
the SM gauge group, some of particles is obtained heavy masses whose scale is around GUT
scale (∼ 1016GeV). The massive particles are the color-triplet Higgs multiplets, the X-type
gauge superfields, and the adjoint Higgs boson itself.

The mass term of the X-type gauge superfields is obtained from the covariant derivative
of the adjoint Higgs boson.

DµΣ = ∂µΣ + ig
[
Aµ, Σ

]
= DµΣ′ + ig

[
Aµ, ⟨Σ⟩

]
, (3.3.1)

where the adjoint Higgs field is expanded around VEV ⟨Σ⟩, Σ = Σ′ + ⟨Σ⟩. The form of VEV
is written down in Eq. (3.1.7) explicitly.

[
Aµ, ⟨Σ⟩

]
=

5V√
2

(
0 −X†

µ

Xµ 0

)
(3.3.2)

Thus, the mass terms of the X-type gauge superfields are obtained as follows;

Tr
(

DµΣDµΣ
)
= Tr

(
DµΣ′DµΣ′)+ 50g2V2X†X + (interaction terms). (3.3.3)
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3.3 Mass Spectrum of GUT Particles

Therefore, the mass of the X-type gauge superfields is MX = 5
√

2gV. The part of the adjoint
Higgs boson in superpotential is expanded around VEV as,

f
3

TrΣ3 +
f V
2

TrΣ2 =
f
3

Tr(Σ′ + ⟨Σ⟩)3 +
f V
2

Tr(Σ′ + ⟨Σ⟩)2. (3.3.4)

If we want to know the mass of adjoint higgs, we have to see the scalar mass term or the
fermion mass term. When we concentrate on scalar mass term, we should calculate the
potential |∂W/∂Σa|2. However the adjoint higgsino mass is easy to calculate.

L ⊃ −1
2

Wijψiψj,

⎛

⎝Wij =
∂2W

∂Φi∂Φj

∣∣∣∣∣
Φ→φ

⎞

⎠ . (3.3.5)

The quadratic term in superpotential is

f TrΣ′2 ⟨Σ⟩+ f V
2

TrΣ′2 = f VTrΣ′2
(

5/2 0
0 −5/2

)

=
5 f V

2
(Tr3Σ8Σ8 − Tr2Σ3Σ3)−

1
4

f VΣ24Σ24.
(3.3.6)

By using normalization of generators, TrTaTb = 1
2 δab, the mass terms are obtained as,

5
4

f VΣa
8Σa

8 −
5
4

f VΣa
3Σa

3 −
1
4

f VΣ24Σ24. (3.3.7)

Therefore, the masses of the adjoint higgsino (= the masses of the adjoint Higgs boson) are

MΣ8 = MΣ3 =
5
2

f V, MΣ24 =
1
2

f V. (3.3.8)

The vector-like mass term of the color-triplet Higgs is obtained from the interaction term
between the color-triplet Higgs and the adjoint Higgs after the grand unified gauge group
is broken down to the standard model gauge group spontaneously.

Wh−Σ = λHα(Σα
β + 3Vδα

β)Hβ

→ 5λVHCaHa
C

(3.3.9)

Therefore, the mass of the color-triplet Higgs is

MHC = 5λV. (3.3.10)
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4 GUT Mass Spectrum from Threshold Corrections
In this section, we assume that the standard model gauge group is embedded in the large
group, SU(5). Below the energy scale at which the unified gauge group is broken, we use
the effective theory in which the heavy massive particles are integrated out in terms of the
path integral. The coupling constants and the field normalizations in the effective theo-
ries include the effects of massive particles. These effects are called “threshold corrections”.
Details of construction methods about effective theories and threshold corrections are de-
scribed in Appendix D.

First, we show the general treatments for the threshold corrections for gauge couplings
and give the threshold corrections at each scale; the GUT scale, the SUSY breaking scale and
the gaugino threshold. Then, we shows the constraint on the GUT-particle mass spectrum
and our results for this constraint in high-scale SUSY breaking model.

4.1 Threshold Corrections from Integrating out the Heavy Massive Parti-
cles

Now, we assume that the standard model gauge group is unified at GUT scale (∼ 1016GeV).
The relation between the gauge couplings of the standard gauge group and the unified
gauge group at a renormalization scale Λ is obtained as follows:

α−1
i (Λ) = α−1

G (Λ)− 4πλi(Λ). (4.1.1)

where αi and αG are defined as g2
i /4π and g2

G/4π; gi and gG are the gauge couplings of
the standard model and the unified gauge coupling, respectively. λi are called threshold
corrections for the gauge coupling gi at GUT scale.

Let us consider the case that the matter contents of a theory change into the other matter
contents at a renormalization scale µ and the gauge group of this theory is not change at µ.
At this scale, the relation of the gauge couplings between these two theories is

α′−1
i (µ) = α−1

i (µ)− 4πλ′
i(µ). (4.1.2)

The effects of heavy massive particles are included in these threshold corrections. At 1-loop
level, this threshold correction is obtained as

λi(µ) =
1

48π2

[
−21Tr

(
t2
iV ln

MV
µ

)
+ 8Tr

(
t2
iF ln

MF
µ

)
+ Tr

(
t2
iS ln

MS
µ

)]
, (4.1.3)

where MV , MF, and MS are the masses of a massive gauge boson, a massive Dirac fermion,
and a massive real scalar. We use DR scheme∗ when we derive this threshold correction. The

∗In this scheme, we require that supersymmetry is preserved by using the dimensional reduction when we
regularize the loop integrals [74]. However, in this scheme, the supersymmetry can be broken at the higher-
loop corrections[75, 76, 77].

31



4.1 Threshold Corrections from Integrating out the Heavy Massive Particles

1st term is obtained from the massive vector boson (including the vector boson, the ghost,
and the Nambu-Goldstone (NG) boson). The contributions of the massive Dirac fermion
and the massive real scalar boson are described in the 2nd and the 3rd terms, respectively.
In this expression, tiV , tiF and tiS are the generators of the massive vector boson, the massive
Dirac fermions, and the real scalar bosons, respectively.

In SUSY GUTs, since massive fields which are associated with by supersymmetric trans-
formation are integrated out at the GUT scale, it is useful to use the threshold correction in
terms of superfields. Therefore we write down the threshold corrections in terms of a vec-
tor boson (including only vector boson and ghost), an absorbed complex NG boson, a Weyl
fermion and a complex scalar.

4πλi(µ) =

1
2π

[
−11

3
Tr
(

t2
iV ln

MV
µ

)
+

1
3

Tr
(

t2
iV ln

MV
µ

)
+

2
3

Tr
(

t2
iF ln

MF
µ

)
+

1
3

Tr
(

t2
iS ln

MS
µ

)]

(4.1.4)

The 1st term is the contribution obtained from the massive vector boson and ghost. The
contribution from the absorbed NG boson is described in the 2nd terms. The massive Weyl
fermion and the massive complex scalar boson contribute to the threshold correction such
as the 3rd term and the 4th term, respectively.

For vector superfields, there are a gauge field and its superpartners “gaugino” which are
two Weyl fermions. There are also a NG boson and its superpartner in an absorbed Nambu-
Goldstone chiral superfield. The threshold correction for the vector superfields is given by

4πλi(µ)

=
1

2π

[
−11

3
Tr
(

t2
iV ln

MV
µ

)
+

2
3

Tr
(

t2
iV ln

MV
µ

)
+

1
3

Tr
(

t2
iS ln

MS
µ

)
+

2
3

Tr
(

t2
iS ln

MS
µ

)]

=
1

2π
(−3C + T) ln

MV
µ

=
1

2π
(−2C) ln

MV
µ

.

(4.1.5)

where C = Tr t2
iV and T = Tr t2

iS. In the second equality, we assume that each superfield
which belongs to the same representation and is integrated out has the same mass. Actually,
in the minimal SUSY SU(5) GUT, these mass matrices are proportional to the unity. Since
the trace of the squared matrices (that is, the Casimir operator) for the massive gauge boson
and for the absorbed NG boson are the same, we set C = T at the last equality.

For chiral superfields, there are a complex scalar field and its superpartners which are
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4.1 Threshold Corrections from Integrating out the Heavy Massive Particles

two Weyl fermions. Therefore the threshold correction for a chiral superfield is given by

4πλi(µ) =
1

2π

[
1
3

Tr
(

t2
iS ln

MS
µ

)
+

2
3

Tr
(

t2
iS ln

MS
µ

)]

=
1

2π
T ln

MV
µ

.
(4.1.6)

4.1.1 Threshold Corrections at the GUT Scale

The heavy gauge boson (X-type gauge superfields) belongs to the fundamental representa-
tion in SU(3)C and also SU(2)L. Thus, the trace of each Casimir operator is 1/2. The hyper-
charge of this boson is 5/6. The contribution of the X-type gauge superfields is obtained as

4πλV
3 (µ) =

1
2π

(
−2 × 1

2

)
ln

MX
µ

× 2 × 2 =
1

2π
· (−4) ln

MX
µ

,

4πλV
2 (µ) =

1
2π

(
−2 × 1

2

)
ln

MX
µ

× 2 × 3 =
1

2π
· (−6) ln

MX
µ

,

4πλV
1 (µ) =

1
2π

3
5

(
−2 ×

(
5
6

)2
)

ln
MX
µ

× 2 × 3 × 2 =
1

2π
· (−10) ln

MX
µ

,

(4.1.7)

where the subscripts 1, 2, 3 are correspond to gauge groups, unified U(1), SU(2)L and SU(3)C,
respectively. MX is the mass of the X-type gauge superfields. The factor 2 is appeared since
the X-type gauge superfields is complex field. Since the unified U(1) charge is different from
U(1)Y regarding normalization, the threshold correction for the unified U(1) is multiplied
by 3/5.

The adjoint Higgs boson Σ(24) is divided into Σ8, Σ3, Σ(3,2), Σ(3̄,2), and Σ24 under the stan-
dard model gauge group. However Σ(3,2) and Σ(3̄,2) are not considered since they are eaten
by the longitudinal component of the heavy gauge boson. Σ8 is the adjoint representation
field in SU(3)C, is the trivial representation in SU(2)L, and is neutral in U(1). Similarly, Σ3
is the adjoint representation field in SU(2)L, is the trivial representation in SU(3)C, and is
neutral in U(1). Σ24 is gauge singlet field. Therefore the contribution from integrating out
the heavy adjoint Higgs field is given by

4πλΣ
3 (µ) =

1
2π

· 3 · ln
MΣ
µ

,

4πλΣ
2 (µ) =

1
2π

· 2 · ln
MΣ
µ

,
(4.1.8)

where MΣ is the masses of Σ8, Σ3. Let us consider the contribution from integrating out the
color-triplet Higgs multiplet which belongs to the fundamental representation in SU(3)C
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4.1 Threshold Corrections from Integrating out the Heavy Massive Particles

and whose hypercharge is ±1/3. There are two color-triplet Higgs multiplets HC, HC in
minimal SUSY SU(5) GUT.

4πλC
3 (µ) =

1
2π

1
2

ln
MHC

µ
× 2,

4πλC
1 (µ) =

1
2π

3
5

(
1
3

)2
ln

MHC

µ
× 2 × 3 =

1
2π

2
5

ln
MHC

µ
,

(4.1.9)

where MHC is the mass of the color-triplet Higgs multiplets. Finally, the relation between the
standard model gauge couplings and the unified gauge coupling at renormalization scale µ
is expressed as;

1
αs

3(µ)
=

1
αG(µ)

− 1
2π

[
−4 ln

MX
µ

+ 3 ln
MΣ
µ

+ ln
MHC

µ

]
,

1
αs

2(µ)
=

1
αG(µ)

− 1
2π

[
−6 ln

MX
µ

+ 2 ln
MΣ
µ

]
,

1
αs

1(µ)
=

1
αG(µ)

− 1
2π

[
−10 ln

MX
µ

+
2
5

ln
MHC

µ

]
,

(4.1.10)

where superscript s denotes the gauge couplings in the supersymmetric standard model.

4.1.2 Threshold Corrections from the SUSY Particles

For a complex scalar, threshold correction is given by

4πλ′
i(µ) =

1
2π

· 1
3
· T ln

MS
µ

. (4.1.11)

Many complex scalar fields are included in supersymmetric theories, which are left-handed
squarks, left-handed sleptons, right-handed up-type squark, right-handed down-type squark,
and right-handed electron-type sleptons. Threshold corrections below their mass scales are
obtained as;

4πλ′
3(µ) =

1
2π

(
1
3

ln
MQ̃

µ
+

1
6

ln
MŨC

µ
+

1
6

ln
MD̃C

µ

)
,

4πλ′
2(µ) =

1
2π

(
1
2

ln
MQ̃

µ
+

1
6

ln
ML̃
µ

)

4πλ′
1(µ), =

1
2π

(
1

30
ln

MQ̃

µ
+

1
10

ln
ML̃
µ

+
4

15
ln

MŨC

µ
+

1
15

ln
MD̃C

µ
+

1
5

ln
MẼC

µ

)
.

(4.1.12)

MQ̃ and ML̃ denote the masses of the left-handed squark and slepton, and MŨC , MD̃C , and
MẼC denote the masses of the right-handed up squark, down squark, and selectron. In su-
persymmetric extension of the standard model, the heavy Higgs boson is also introduced
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4.1 Threshold Corrections from Integrating out the Heavy Massive Particles

in addition to the standard model Higgs boson. Since this heavy boson is the SU(3)C sin-
glet, the SU(2)L doublet, and its hypercharge is 1/2, the contributions from heavy Higgs is
obtained as follows:

4πλ′
2(µ) =

1
2π

· 1
6

ln
MH
µ

,

4πλ′
1(µ) =

1
2π

· 1
10

ln
MH
µ

,
(4.1.13)

where MH is the mass of the heavy Higgs boson. In the supersymmetric standard model,
many Weyl spinors are also included. The threshold correction for a Weyl spinor is given by

4πλ′
i(µ) =

1
2π

· 2
3
· Tr(t2

iF) ln
MF
µ

. (4.1.14)

at renormalization scale µ. Since Tr(t2
iF) is equal to N for the gaugino of SU(N) and is equal

to 0 for the abelian gaugino, threshold corrections for integrating out gauginos are given by

4πλ′
3(µ) =

1
2π

· 2 ln
M3
µ

,

4πλ′
2(µ) =

1
2π

· 4
3

ln
M2
µ

,

4πλ′
1(µ) = 0,

(4.1.15)

where M1, M2 and M3 denote the masses of binos, winos, and gluinos, respectively. The hig-
gsinos are also Weyl spinors including in the supersymmetric standard model. The contri-
butions from higgsinos which are superpartners of two doublet Higgs bosons are expressed
as;

4πλ′
2(µ) =

1
2π

· 2
3

ln
MH̃
µ

,

4πλ′
1(µ) =

1
2π

· 2
5

ln
MH̃
µ

.
(4.1.16)

MH̃ denotes the masses of the higgsino. Let us summarize threshold correction from SUSY
particles. In the high-scale SUSY breaking model, the squarks, the sleptons, the higgsinos
and the heavy higgses are integrated out at the SUSY breaking scale. The effects of these
heavy particles are included through the threshold corrections which are given by

1
α′3(µ)

=
1

αs
3(µ)

− 1
2π

[
1
3

Ng ln
MQ̃

µ
+

1
6

Ng ln
MŨC

µ
+

1
6

Ng ln
MD̃C

µ

]
, (4.1.17)
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1
α′2(µ)

=
1

αs
2(µ)

− 1
2π

[
1
2

Ng ln
MQ̃

µ
+

1
6

Ng ln
ML̃
µ

+
2
3

ln
MH̃
µ

+
1
6

ln
MH
µ

]
, (4.1.18)

1
α′1(µ)

=
1

αs
1(µ)

− 1
2π

[
1

30
Ng ln

MQ̃

µ
+

4
15

Ng ln
MŨC

µ
+

1
15

Ng ln
MD̃C

µ

+
1
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Ng ln

ML̃
µ

+
1
5

Ng ln
MẼC

µ
+

2
5

ln
MH̃
µ

+
1

10
ln

MH
µ

]
.

(4.1.19)

where Ng is the number of generations. The couplings with prime denote the gauge cou-
plings in the standard model with the gauginos. Now, we assume that the heavy sparticles
are degenerate in mass (MS). Under this assumption, the relations between couplings are
simplified as:

1
α′3(µ)

=
1

αs
3(µ)

− 1
2π

2
3

Ng ln
MS
µ

,

1
α′2(µ)

=
1

αs
2(µ)

− 1
2π

(
2
3

Ng +
5
6

)
ln

MS
µ

1
α′1(µ)

=
1

αs
1(µ)

− 1
2π

(
2
3

Ng +
1
2

)
ln

MS
µ

.

(4.1.20)

At the threshold where the energy scale gauginos are integrated out, the matching condi-
tions for the gauge couplings are given by

1
α3(µ)

=
1

α′3(µ)
− 1

2π
2 ln

M3
µ

,

1
α2(µ)

=
1

α′2(µ)
− 1

2π

4
3

ln
M2
µ

,

1
α1(µ)

=
1

α′1(µ)
.

(4.1.21)

where αi denotes the standard model gauge couplings.

4.2 Constraints on Mass Spectrum of GUT-Scale Particles
In this subsection, we show that the mass spectrum of GUT-scale particles can be changed in
the case of high-scale SUSY scenario. As we have explained in previous subsection, thresh-
old corrections for the gauge couplings are the function of the renormalization scale and
the mass scale of the particles which are integrated out. If we choose linear combinations
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4.2 Constraints on Mass Spectrum of GUT-Scale Particles

of threshold corrections in Eq. (4.1.10) appropriately, the mass spectrum of the GUT scale
particles which is independent from the unified gauge coupling at GUT scale is obtained as:

3
αs

2(µ)
− 2

αs
3(µ)

− 1
αs

1(µ)
=

1
2π

· 12
5

ln
MHC

µ
,

5
αs

1(µ)
− 3

αs
2(µ)

− 2
αs

3(µ)
=

1
2π

· 12 ln
M2

X MΣ

µ3 .
(4.2.1)

Left-hand sides of these relations are given by gauge couplings of the MSSM at renormal-
ization scale µ.

For understanding the sparticle mass dependence of the GUT-scale mass spectrum, we
use 1-loop beta functions for the gauge couplings. RGEs at 1-loop level are given by

dgi
d ln µ

=
big3

i
16π2 , (4.2.2)

where bi are determined as follows:

(b1, b2, b3)SM =

(
41
10

,−19
6

,−7
)

,

(b1, b2, b3)gaugino =

(
41
10

,−11
6

,−5
)

,

(b1, b2, b3)MSSM =

(
33
5

, 1,−3
)

.

(4.2.3)

The subscript “SM” and “MSSM” denote that these coefficients are in the SM and in the
MSSM, respectively. Similarly, “gaugino” means that these coefficients are in the theory
which includes only the SM particles and gauginos. Then, we obtain the 1-loop result as:

3
α2(mZ)

− 2
α3(mZ)

− 1
α1(mZ)

=
1

2π

[
12
5

ln
MHC

mZ
− 2 ln

MS
mZ

+ 4 ln
M3
M2

]
,

5
α1(mZ)

− 3
α2(mZ)

− 2
α3(mZ)

=
1

2π

[
12 ln

M2
X MΣ

m3
Z

+ 4 ln
M3M2

m2
Z

]
.

(4.2.4)

From these relations, we can find out the following properties. First, the first line of Eq. (4.2.4)
shows the sparticle mass dependence of the color-triplet Higgs multiplets. The mass of the
color-triplet Higgs multiplets depends on the mass of the heavy scalars and the ratio of
gaugino masses. That is, the mass of the color-triplet Higgs multiplets is proportional to
M5/6

S and (M3/M2)−5/3. This relation also implies that the color-triplet Higgs multiplets
which is SU(5) partner of the doublet Higgs bosons could become more massive when the
heavy Higgs doublet obtains more heavier mass.

37



4.2 Constraints on Mass Spectrum of GUT-Scale Particles

Figure 4: Gluino mass dependence of MGUT. tan β is set to be 3 and the degenerate scalar
mass is set to be 103 TeV. A black region describes the case of low-scale SUSY scenario that
SUSY breaking scale is set to be 1TeV and the masses of gluino and wino are set to be
1TeV and 0.3TeV, respectively. Theoretical error coming from the strong coupring constant
αS(mZ) = 0.1184(7) is also shown.

Another relation states that a mass combination such as MGUT ≡ M2/3
X M1/3

Σ is propor-
tional to the product of the gaugino masses as (M3M2)−1/9. This relation also states that the
sparticle mass does not contribute to this value.

In a realistic calculation, quark masses are estimated as the MS masses except top quark
mass. Also, we know gauge couplings as MS values. Hence, if we use RGEs in the DR scheme,
we must transform these MS values into the DR ones. First, we will connect gauge couplings
in the MS scheme and those in the DR scheme. These values are related by the following
forms∗:

1
αDR

3 (µ)
=

1
αMS

3 (µ)
− 1

4π
,

1
αDR

2 (µ)
=

1
αMS

2 (µ)
− 1

6π
,

1
αDR

1 (µ)
=

1
αMS

1 (µ)
.

(4.2.5)

∗These relations between the gauge couplings in the MS and the DR schemes are given in Appendix D.

38



4.2 Constraints on Mass Spectrum of GUT-Scale Particles

Furthermore, masses of quarks are transformed as [78]:

mDR
q (µ) = mMS

q (µ)

[
1 − αS(µ)

3π

]
,

mpole
q

mDR
q (µ)

= 1 +
αDR

S (µ)

π

⎡

⎣5
3
− ln

(
mDR

q (µ)

µ

)2⎤

⎦ .
(4.2.6)

By using all of these relations, we can use all of parameters as DR couplings.
If we consider the threshold correction at the 1-loop level, we must treat beta functions

of the gauge couplings at the 2-loop level. The 2-loop renormalization group equations for
gauge couplings are described in Appendix E. In order to obtain the RG evolution of the
gauge couplings, the 1-loop RGEs for Yukawa couplings are sufficient since these do not
emerge in RGEs for gauge couplings until we consider them at the 2-loop level.

Since there are several threshold scales between the electroweak scale and the unification
scale, running couplings should be matched properly at each threshold scales. Above the
electroweak scale, we find the gaugino threshold is near several TeV. At this threshold, gauge
couplings are matched as Eq. (4.1.21).

Next, at SUSY breaking threshold (at MS), threshold corrections for the gauge couplings
are given by Eq. (4.1.20). Yukawa couplings are matched as

Ũ(MS) =
1

sin β
U(MS),

Ỹj(MS) =
1

cos β
Yj(MS) (j = D, E),

(4.2.7)

where Yukawa couplings in right-hand side are supersymmetric ones and those in left-hand
side are the couplings in the standard mode with gauginos.

Numerical calculations for these GUT scale masses at the 2-loop level are exhibited in
Fig. 4, Fig. 5, and Fig. 6. In these calculations, ambiguity of the strong gauge coupling is
included as widths of theoretical lines.

First, in Fig. 4, we show the gluino mass dependence of MGUT. A red line and a blue line
correspond to the case that the mass of wino is set to be 0.3TeV and 3TeV, respectively. A
black region describes the case of low-scale SUSY scenario that SUSY breaking scale is set to
be 1TeV and the masses of gluino and wino are set to be 1TeV and 0.3TeV, respectively. In
this parameter set, we obtain

MGUT = (1.68 ± 0.03)× 1016 GeV. (4.2.8)

Even if the breaking scale of supersymmetry is higher than the TeV scale, the GUT scale
MGUT will be barely changed from the low-scale SUSY scenario.
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4.2 Constraints on Mass Spectrum of GUT-Scale Particles

Figure 5: (Left) Gluino mass dependence of the mass of the color-triplet Higgs multiplets.
tan β is set to be 3 TeV and the degenerate scalar mass is set to be 103 TeV. Error bar coming
from strong coupling constant αS(mZ) = 0.1184(7) is also shown.

Figure 6: (Right) SUSY breaking scale dependence of color-triplet Higgs boson mass. tan β is
set to be 3 TeV and wino mass is set to be 3 TeV. Error bar indicates the input error of strong
coupling constant αS(mZ) = 0.1184(7).

Next, in Fig. 5, we show the gluino mass dependence of MHC . In this figure, we set the
mass scale of sfermions to be 103TeV. A red line and a blue line correspond to the case that
the mass of wino is set to be 0.3TeV and 3TeV, respectively. Finally, Fig. 6 shows the SUSY
breaking scale dependence of MHC . In this calculation, we set wino mass to be 3 TeV. A red,
a blue and a green region correspond to the case that the mass ratio of gaugino (M3/M2) is
set to be 3, 9, and 30, respectively.

In each figures, a black region describes the case of low-scale SUSY scenario, which we
use the same parameter set as Eq. (4.2.8). By using this parameter set, we find

MHC = (8.77 ± 2.25)× 1014 GeV. (4.2.9)

In low-scale SUSY scenarios, since not only that the breaking scale of SUSY is near TeV
but also that the color-triplet Higgs bosons have light mass, proton decay caused by the
color-triplet Higgs multiplets have contradicted observational result (τ(p → K+ + ν̄) >
5.9 × 1033 years) in Super-Kamiokande. However, in high-scale SUSY breaking scenarios,
we find that the color-triplet Higgs multiplets have heavy mass compared with low-scale
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Figure 7: Red lines show the running couplings in the high-scale SUSY(MS = 102TeV, M2 =
3TeV, M3/M2 = 9). Blue lines describe the couplings in the low-scale SUSY(MS =
1TeV, M2 = 0.3TeV, M3/M2 = 3). In right figure (closed up figure), we include ambigu-
ity of the strong coupling αS(mZ) = 0.1184(7).

scenario. We will see whether this dangerous proton decay mode can be consistent with
recent experiments in the next section.

In the minimal SUSY SU(5) GUT with low-scale SUSY, it is obvious that there is small
mass hierarchy between color-triplet Higgs and the others. In fact, there exists difference
about an order of magnitude between Eq. (4.2.8) and Eq. (4.2.9). These figures (Fig. 4, Fig. 5
and Fig. 6) also show us that all of GUT particles can have the same order masses. This
also means that threshold corrections at GUT scale can be small in high-scale SUSY. In other
words, this means that the gauge coupling unification can be improved without large thresh-
old correction at GUT scale. In Fig. 7, we show that gauge coupling unification in high-scale
SUSY scenario can be improved compared with that in low-scale. A horizontal line and a
vertical line correspond to a renormalization scale and the inverse squared gauge coupling,
α−1, respectively.
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Figure 8: Color-triplet higgs mediated diagram. In the left figure, the LLLL operator are
generated. In the right figure, the RRRR operator are generated.

5 Nucleon Decay in Minimal SUSY SU(5) GUT
In GUTs, quarks and leptons are embedded in the same multiplet. For example, in SU(5)
GUTs, the right handed up-type quarks, the left-handed quark doublets, and the right-
handed electrons are embedded in the anti-symmetric 10 representation fields. The right-
handed down quarks and the left-handed lepton doublets are also embedded in the anti-
fundamental (5) representation fields. Therefore, there are some baryon number (B) violat-
ing operators. First, we review how baryon number violating operators are constructed in
the SUSY SU(5) GUTs in this section. Second, we show our results for the proton lifetime
triggered by dimension-five operators in the high-scale SUSY breaking scenario.

5.1 Construction of the baryon number violating higher dimensional op-
erators

In the minimal SUSY SU(5) GUTs, there are two kinds of fields which couple to both quarks
and leptons; the X-type gauge superfields and the color-triplet Higgs multiplets. The X
bosons are the SU(5) partners of the standard model gauge fields. The color-triplet Higgs
multiplets are the SU(5) partners of two Higgs doublets. The later makes characteristic oper-
ators in SUSY GUTs. These give rise to too short lifetime of proton which is inconsistent with
the experimental constraints from Super-Kamiokande (τ(p → K+ + ν) > 5.9 × 1033years)
[79, 80]. Therefore, these operators must be forbidden or suppressed by some mechanisms
in the low-scale SUSY scenario.

5.1.1 Dimension-five operators (Color-triplet Higgs boson exchange)

First, let us consider why these operators give rise to too short partial lifetime of a proton.
The color-triplet Higgs multiplets obtain the vector-like mass term MHC HCHC after the ad-
joint Higgs bosons have obtained VEV. The terms including the color-triplet multiplets are
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5.1 Construction of the baryon number violating higher dimensional operators

given by

WHC = MHC HCHC + hieiϕiUC
i EC

i HC +
hi

2
eiϕi QiQiHC + V∗

ij f jQiLjHC + V∗
ij f jUC

i DC
j HC.

(5.1.1)

After we carry out the Gaussian path integral in order to integrate out the color-triplet
Higgs multiplets, the superpotential of the dimension-five operators is obtained as:

W5 =− 1
MHC

V∗
kl flhieiϕiUC

i EC
i QkLl

− 1
MHC

(
V∗

kl flhieiϕi ϵabcUC
iaEC

i UC
kbDC

lc +
hi

2
V∗

kl fleiϕi ϵabc(Qb
i Qc

i )(Q
a
kLl)

)
.

(5.1.2)

When we use mass eigenstates, this is rewritten as:

W5 =− 1
MHC

V∗
kl flhieiϕiUC

i EC
i QkLl

− 1
MHC

(
V∗

kl flhiVije−iϕk ϵabcUC
iaEC

j UC
kbDC

lc +
hi

2
V∗

kl fleiϕi ϵabc(Qb
i Qc

i )(Q
a
kLl)

)
.

(5.1.3)

The second and the third terms are related to the nucleon decay. The second term is called
“RRRR operator", and the third term is called “LLLL operator". These Wilson coefficients
are denoted as follows:

Cikl
LLLL = − 1

2MHC

hieiϕiV∗
kl f l, Cijkl

RRRR = − 1
MHC

V∗
kl flhiVije−iϕk . (5.1.4)

We obtain the four-fermi interactions for nucleon decay from LLLL operator by interme-
diating the gaugino or the doublet higgsino as in Fig. 9. Since the neutral gaugino inter-
actions are flavor-diagonal, contributions from these particles can be negligible because of
the Yukawa couplings of the 1st and the 2nd generations in the Wilson coefficients of the
dimension-five operator. If squarks are not degenerate in mass, the gluino contributions are
not negligible due to the strong gauge coupling of the gluino-sfermion-fermion interaction.
However, since we carry out the evaluation of proton lifetime by making squarks degenerate
in mass MS, the gluino contributions completely vanish. The higgsino contributions need
the Yukawa couplings on the vertices, higgsino-squark-quark and so on. Thus, higgsinos do
not generate the dominant contributions. Therefore, the main contribution is obtained from
the charged gauginos.

Now, we calculate the triangle diagram amplitude in the left figure of Fig. 9. This contri-
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Figure 9: Four-fermi operator from dimension-five operators. In above figures, the black dot
denotes the dimension-five operators. In the right figure, charged higgsino-dressed diagram
from RRRR operator. In the left figure, charged wino-dressed diagram from LLLL operator.

bution is proportional to the function f (mũ, md̃, M2) which is defined as:
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∫ d4k
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ũ
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)
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≈ α2
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ũ
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2
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)
≡ α2

4π
f (mũ, md̃, M2)

(5.1.5)

where mũ and md̃ are the masses of the sfermions, ũ and d̃, respectively. In the first line of
Eq. (5.1.5), the subscript “11” denotes the (1,1) element of the chargino mass matrix.

Mchargino =

(
M2

√
2mW cos β√

2mW sin β µH

)
(5.1.6)

where M2 and µH denote the mass of the charged wino and the charged higgsino, respec-
tively. tan β is the ratio of the VEVs of the two doublet Higgs bosons. The mass term of the
charginos is written as:

−1
2
(ψ+)T Mcharginoψ+, (5.1.7)

where the chargino basis is given by (ψ+)T = (W̃+, h̃+). In general, the integral in Eq. (5.1.5)
depends on the inverse matrix of this mass matrix, in other words depends on off-diagonal
elements and µH. However, since the sparticle masses are much heavier than the elec-
troweak scale in our calculation, the off-diagonal component of this matrix is negligible
approximately: that is, the chargino mass matrix is diagonal approximately.

If squarks are degenerate in mass, M2
S ≡ m2

ũ = m2
d̃, we find that this mass function

f (mũ, md̃, M2) becomes such as:

f (MS, MS, M2) = F(M2, MS) ≡
M2

M2
S − M2

2

(
1 − M2

2
M2

S − M2
2

ln
M2

S
M2

2

)
. (5.1.8)
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5.1 Construction of the baryon number violating higher dimensional operators

We choose out two sfermions among four external lines of the dimension-five operators.
There are 4C2 = 6 pattern diagrams for each LLLL operator included in the superpotential

WLLLL = Cikl
LLLLϵabcQa

i Qb
i Qc

kLl

= Cikl
LLLLϵabc(Ua

i D′b
i − D′a

i Ub
i )(U

c
kEl − D′c

k Nl).
(5.1.9)

Though we obtain the effective operators which are not only associated with the nucleon
decay but also are proportional to (ua

i uc
k)(u

b
i νl) and so on, these operators vanish due to the

antisymmetric tensor ϵabc included in the Wilson coefficients of the dimension-five operators
but these operators are symmetric under exchanging external lines ua

i , ub
i . Then, we obtain

the four-fermi operators for nucleon decay by combining these results as following form:

−2
α2
4π

Cikl
LLLLϵabc

{
[ f (mũi , md̃i

, M2) + f (mν̃l , md̃k
, M2)](d′ai ub

i )(eluc
k)

+ [ f (mẽl , mũi , M2) + f (mũi , md̃k
, M2)](d′ai νl)(d′bi uc

k)

+ [ f (mũk , mẽl , M2) + f (mũi , md̃i
, M2)](ua

i d′bi )(d
′c
k νl)

+ [ f (md̃i
, mũk , M2) + f (mν̃l , md̃i

, M2)](ua
i d′bk )(u

c
i el)
}

.

(5.1.10)

Now, we also obtain the four-fermi operators from the RRRR operator. We have obtained
the RRRR operator which consists of only the right-handed chiral superfields as follows:

WRRRR = Cijkl
RRRRUC

i EC
j UC

k DC
l . (5.1.11)

Since there is no anti-quark in proton, the four-fermi operators obtained from W∗
RRRR con-

tribute proton decay.

W∗
RRRR = C∗ijkl

RRRRϵabc(Uia
R Ej

R)(U
kb
R Dlc

R )

= − 1
MHC

(
V∗

kl f lhiVije−iϕk
)∗

ϵabc(Uia
R Ej

R)(U
kb
R Dlc

R )
(5.1.12)

In the similar way as the LLLL operator, the four-fermi operators are induced by mediating
sparticles. Of course, the neutralinos and the gluinos do not contribute to nucleon decay as
mentioned above. Since there is no left-handed particles in the RRRR operator, sparticles
in the triangle diagram are not couple to the charged wino. Thus, the charged higgsino-
exchange diagram mainly contributes to nucleon decay. We also obtain the triangle diagram
amplitude in the similar way as the case of the LLLL operator. This amplitude is propor-
tional to the function g(mũ, md̃, µH) which is defined as:

1
(4π)2 g(mũ, md̃, µH) ≡

1
(4π)2

µH

m2
ũ − m2

d̃

(
m2

ũ
m2

ũ − µ2
H

ln
m2

ũ
µ2

H
−

m2
d̃

m2
d̃ − µ2

H
ln

m2
d̃

µ2
H

)
. (5.1.13)
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5.1 Construction of the baryon number violating higher dimensional operators

where µH is the mass of the charged higgsino and mũ and md̃ are the masses of the sfermions,
ũ and d̃, respectively. If sfermions are degenerate in mass (m2

ũ = m2
d̃ ≡ M2

S), this mass
dependence is changed as:

g(MS, MS, µH) = −F(µH, MS) = − µ

M2
S − µ2

[
1 − µ2

M2
S − µ2 ln

M2
S

µ2

]
. (5.1.14)

This sparticle mass dependence is the same as the mass dependence of the four-fermi oper-
ators which are obtained from the LLLL operator. We have the contributions from all of the
higgsino-dressed diagrams as follows:

− C∗ijkl
RRRR

ϵabc
(4π)2

×
{

V∗
ml f̄ l

[
h̄kg(mũk , md̃l

, µH)(uia
R ej

R)(u
mc
L d′kb

L ) + h̄kg(mũi , md̃l
, µH)(ukb

R ej
R)(u

mc
L d′iaL )

]

+ f̄ j
[

h̄kVkng(mũk , mẽj , µH)(dlc
Ruia

R)(d
nb
L ν

j
L) + h̄iVing(mũi , mẽj , µH)(dlc

Rukb
R )(dna

L ν
j
L)
]}

(5.1.15)

where f̄ i, h̄i denote Yukawa couplings at the SUSY breaking scale.
Note that the sparticle mass dependence of this function is obtained as

F(µ, MQ̃) ≃

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

µ

M2
Q̃

MQ̃ ≫ µ

1
2MQ̃

MQ̃ = µ

1
µ

ln
µ2

M2
Q̃

µ ≫ MQ̃.

(5.1.16)

This expression shows that the partial proton lifetime via the color-triplet Higgs multiplets
is proportional to M2

SM2
HC

naively. Thus, it has been pointed out that this partial lifetime
would be short in the low-scale SUSY scenario[81, 82].

5.1.2 Dimension-six operators (X-boson exchange)

Nucleon decay is also given rise to by the dimension-six operators. This operator is obtained
not only in SUSY GUTs but in non-SUSY GUTs. The dimension-six proton decay operators
are generated by exchanging the X-boson. The Kähler potential is given as:

K = Φα

(
e−2g5V5

)α

β
Φ∗β + Ψ∗

αβ

(
e2g5V5

)α

δ

(
e2g5V5

)β

γ
Ψγδ + 2Σα

β

(
e2g5V5

)β

γ
Σγ

δ

(
e−2g5V5

)δ

α
.

(5.1.17)

46



5.1 Construction of the baryon number violating higher dimensional operators

g5 and V5 are the gauge coupling constant of SU(5) gauge and the vector superfield includ-
ing SU(5) gauge bosons, respectively. Σ is the adjoint Higgs which breaks SU(5) gauge
symmetry to the standard model gauge symmetry.

After the unified gauge group breaks down to the SM gauge group, we obtain the mass
term of the X-boson and the interaction terms with X-boson.

L = M2
XXµX†

µ +
g5√

2

[
ϵrt(Lt)Cγµ(Xr

a)µPRda + ϵadeQ∗
drγµ(Xr

a)µPL(uC)e

+ ϵtreCγµ(Xr
a)µPLQat + h.c.

] (5.1.18)

Thus, we obtain the effective Lagrangian by integrating out the X-boson as follows:

Leff = − g2
5

2M2
X

[
ϵrs(dC)aγµPRL∗

s + ϵabc(uC)bγµPLQrc + ϵrsQ∗
raγµPLeC

]

×
[
ϵrt(Lt)CγµPRda + ϵadeQ∗

drγµPL(uC)e + ϵtreCγµPLQat
]

.
(5.1.19)

For proton decay, all we have to do is to treat the following operators:

Lp−decay
eff = − g2

5
2M2

X
ϵabc

[
(uC)b

i γµPLuc
i (eC)jγ

µPRda
j + (uC)b

i γµPLuc
i (eC)jγ

µPLda
j

−(uC)b
i γµPLdc

i (eC)jγ
µPLua

j

]
.

(5.1.20)

When we use the mass eigenstate defined as Eq. (3.2.11) and we choose the flavor indices
properly, we obtain the effective Lagrangian for the p → π0 + e+ mode.

Lp→π0+e+
eff

= − g2
5

2M2
X

ϵabceiϕ1
[
((uC)bγµPLuc)(eCγµPRda) +

(
1 + |Vud|2

)
((uC)bγµPLuc)(eCγµPLda)

]

= − g2
5

M2
X

ϵabceiϕ1
[
((uC)aPRdb)(eCPLuc) +

(
1 + |Vud|2

)
(eCPRua)((uC)bPLdc)

]
.

(5.1.21)

In the last equality, we use the relations as:

(Ψi
γµPLΨj)(Ψ

k
γµPLΨl) = 2(ΨkPRΨiC)(ΨC jPLΨl)

(Ψi
γµPRΨj)(Ψ

k
γµPLΨl) = 2(ΨiPRΨl)(Ψ

kPLΨj).
(5.1.22)

This expression shows that the proton decay rate by exchanging the X-boson is sufficiently
suppressed by the mass of the X-boson.
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5.2 Proton lifetime via dimension-five operators

5.2 Proton lifetime via dimension-five operators
Now we calculate the partial decay rate and the partial lifetime of proton caused by the
dimension-five operators numerically. When we calculate these values, we must include
the renormalization effects which are renormalization group evolutions and threshold cor-
rections of all couplings at perturbative level which we use. In our calculation for the proton
decay rate, we use 1-loop RGEs and tree-level threshold corrections. We only know the low-
energy parameters including Yukawa couplings, gauge couplings of the SM, and dimen-
sionful or dimensionless couplings of the Higgs potential. We use the DR scheme for the
renormalization since we treat the supersymmetric theories. These renormalization effects
are calculated as the following procedure described in Fig. 10.

• We use masses of quarks and leptons at the low-energy scale as input parameters.
Since some of these mass parameters are known as MS mass at these mass scale, we
can obtain the Yukawa couplings at the electroweak scale by running these masses.
Note that we need to transform these masses to DR masses since these masses are
determined as MS mass. Since the top quark mass is given as a pole mass, we also
transform the top pole mass to the DR mass.

• From the electroweak scale to the GUT scale, these Yukawa couplings and gauge cou-
plings are run by using RGEs. There exist thresholds in the intermediate scales, the
gaugino threshold and the SUSY breaking threshold. For each threshold, we change
the RGEs and match these coupling appropriately.

• After we construct the Wilson coefficients of the dimension-five operator at the GUT
scale, these values evolve in accordance with RGEs for them. Since the dimension-five
operators are generated from superpotential, these RGEs are easily obtained due to the
non-renormalization theorem [83].

• Under the SUSY breaking scale (the sfermion mass scale), these dimension-five oper-
ators are changed into the four-fermi operators. Thus, these Wilson coefficients also
have the scale dependence following with RGE evolutions from the SUSY breaking
scale to the electroweak scale [84].

• Only QCD corrections for these four-fermi operators must be considered below the
electroweak scale. By using these corrections, we obtain the Wilson coefficients of the
proton decay operators at 2GeV.

These RGEs are given in Appendix E. Then, in order to obtain the amplitude for the proton
decay, we use the hadron matrix elements at 2GeV which are calculated by lattice simulation
[85]. The renormalization effects between the electroweak scale and the GUT scale are the so-
called short-range renormalization. Below the electroweak scale, the renormalization effects
are also called the long-range renormalization.
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5.2 Proton lifetime via dimension-five operators

Figure 10: RGEs for calculation of the renormalization factors.

In our calculation, we assume that the squarks, the sleptons, and the heavy Higgs boson
are degenerate in mass, MS. The effective Lagrangian for the decay mode (p → K+ + ν̄) is
obtained from Eq. (5.1.10),Eq. (5.1.15) at parton level.

Lp→K+ ν̄
eff =− α2

π
F(M2, MS)∑

i,l
Ci3l

LLLLVisVidϵabc

[
(db

Luc
L)(s

a
LνlL) + (sb

Luc
L)(d

a
LνlL)

]

+
F(µH, MS)

(4π)2 h̄3 f̄ 3ϵabc

[
C∗3311

RRRRVts(dc
Rua

R)(s
b
LνLτ) + C∗3312

RRRRVtd(sc
Rua

R)(d
b
LνLτ)

]

(5.2.1)

The first line of this Lagrangian is obtained from the LLLL operator and the second line is
obtained from the RRRR operator. Since the contribution from the RRRR operator is sup-
pressed by Yukawa couplings, it is enough that the only diagram where the third generation
sfermions run in the loop is taken into account as the dominant contribution. In order to ob-
tain the scattering amplitudes for the proton decay (p → K+ + ν̄), it is required that the
scattering amplitudes at parton level are translated into those at hadron level. The hadron
matrix elements of nucleon decay are calculated directly (that is, the three-point functions,
which a baryon decay into a pseudo-meson and a lepton, are directly calculated) by lattice
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5.2 Proton lifetime via dimension-five operators

simulation [85]∗.

⟨K+|ϵabc(ua
Rsb

R)d
c
L|p⟩ = −0.054 GeV2,

⟨K+|ϵabc(ua
Lsb

L)d
c
L|p⟩ = 0.036 GeV2,

⟨K+|ϵabc(ua
Rdb

R)s
c
L|p⟩ = −0.093 GeV2,

⟨K+|ϵabc(ua
Ldb

L)s
c
L|p⟩ = 0.111 GeV2.

(5.2.2)

The proton decay rate for this mode is given by

Γ(p → K+ν̄) =
(m2

p − m2
K)

2

32πm3
p

∣∣∣∣∣ ∑
i=e,µτ

M(p → K+ν̄i)

∣∣∣∣∣

2

. (5.2.3)

where mp and mK are the mass of a proton and a charged K meson, respectively, and M(p →
K+ν̄i) denotes the amplitude for the decay mode: p → K++ ν̄i. Now let us see the parameter
dependence of the partial proton lifetime. When the higgsino is degenerate in sfermion
masses, the partial proton lifetime is obtained approximately as:

τp ∼ (4.0 × 1035)× sin4 2β

(
0.1
AR

)2 ( MS
102 TeV

)2( MHC

1016 GeV

)2
[years] (5.2.4)

where tan β is the ratio of the VEVs of two doublet Higgs bosons, and MS and MHC are the
masses of the sfermions and the color-triplet Higgs multiplets, respectively. In addition, AR
denotes the renormalization factor due to the running of the Yukawa coupling and the Wil-
son coefficient of dimension-five operator and so on. This approximate expression shows
that the lifetime is proportional to M2

SM2
HC

. For tan β ≥ 1, this value is also proportional to
1/ tan4 β. Thus, in the low-scale SUSY breaking scenario(MS ∼ 1TeV), this lifetime is around
τp ∼ 1030 years [12]. H. Murayama and A. Pierce pointed out that this partial lifetime was
no longer consistent with the experimental bound even if the squarks except the third gen-
eration had the superheavy mass [13]∗. That is, lifetime of this decay mode is inconsistent
with the experimental result (τp ! 5.9 × 1033 years). On the other hand, this naive analysis
tells us that proton lifetime in the high-scale SUSY breaking scenario can be longer than that
in the low-scale SUSY breaking scenario.

Now, we show the numerical calculations for the p → K+ + ν̄ mode in the high-scale
SUSY breaking scenario. The results of the numerical calculations are described in Fig. 11
and Fig. 12.

∗Indirectly, the hadron matrix elements in lattice simulation is calculated by using the chiral Lagrangian
with baryon [86, 87]. In these lattice simulations, parameters of the chiral Lagrangian are determined by
calculating the two-point functions.

∗In this decoupling scenario, the stop has mass of several TeV. Thus, the contribution from RRRR operator
gives rise to a short lifetime.
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5.2 Proton lifetime via dimension-five operators

Figure 11: These figures show that proton lifetime can be evaded from the experimental limit
of Super-Kamiokande (τ > 5.9 × 1033years [79, 80]) in the case (µH = MS, M2 = 3TeV). The
gray region is excluded from this limit. From left-top to right-bottom, these lines correspond
to tan β = 2, 3, 5, 10, 30, and 50. The mass of the color-triplet Higgs multiplets is set to be
1015GeV(1016GeV) in this left (right) figure.

First, in Fig. 11, we have evaluated the proton lifetime in the case MS = µH, which
corresponds to the high-scale SUSY scenario [68, 66], for various tan β. In this case, the
additional phases which are included in the Yukawa matrices do not affect the result since
the higgsino contribution is only dominant. In this calculation, the mass of the color-triplet
Higgs bosons is set to be 1015 GeV or 1016 GeV based on the argument of the constraints
on the GUT scale masses from threshold corrections. In Fig. 11, various lines correspond to
tan β = 2, 3, 5, 10, 30, and 50 from left-top to right-bottom.

These figures in Fig. 11 show that the proton lifetime of the p → K+ + ν̄ mode is consis-
tent with the recent experimental lower bound (τp→K++ν̄ > 5.9× 1033 years) in the high-scale
SUSY breaking scenario even if the SUSY breaking scale is around 100TeV. In particular, in
these regions, the observed mass of the SM Higgs boson can be realized. Therefore, the mini-
mal supersymmetric SU(5) grand unified theory is not excluded by this proton lifetime con-
straint in the high-scale SUSY scenario. Additionally, our results show that the dimension-
five proton decay may be detectable by the future experiment (Hyper-Kamiokande) in a
broad soft parameter region where the mass of the observed Higgs boson can be realized.
In other words, to discover this decay mode (p → K+ + ν̄) in future experiments indirectly
ensures that the high-scale SUSY breaking scenario may be realized in this world.
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5.2 Proton lifetime via dimension-five operators

Figure 12: These figures show that proton lifetime can be evaded from the experimental
limit of Super-Kamiokande (τ > 5.9 × 1033years [79, 80]) in the case (µH < MS, MHC =
1016GeV). The gray region is excluded from this limit. From right-top to left-bottom, these
lines correspond to tan β = 3, 5, 10, 30, and 50(10, 30, and 50) in this right (left) figure. M2
is set to be 300GeV(3TeV) and MS is set to be 102TeV (103TeV) in left (right) figure.

Next, Fig. 12 shows that the dimension-five proton decay is also consistent with experi-
mental result in the case µH < MS, which corresponds to the Split SUSY model [10, 11, 70].
In this scenario, we take the additional phases ϕi so that they yield the maximal amplitudes
for this decay mode. In these figures, we set the mass of the color-triplet Higgs multiplets
to be 1016GeV. M2 is set to be 300GeV (3TeV) and MS is set to be 102TeV (103TeV) in the left
(right) figure. Since the sparticle mass dependence of the amplitude for this proton decay
mode is roughly proportional to µ/M2

S where µ is mass of charginos, if the mass of chargino
is lighter than that of sfermions, the amplitude for this decay mode becomes much smaller.
That is, the large mass hierarchy between the bosonic and the fermionic sparticles leads to
long proton lifetime.

Now, we show the parameter regions where the observed higgs mass can be realized, the
minimal SUSY SU(5) GUT can be excluded by the proton lifetime, and the mass of the color-
triplet Higgs is above the Planck scale as the MS–tan β plot in the minimal SUSY SU(5) GUT
with the high-scale SUSY breaking scenario in Fig. 13. In this figure, we set all of soft SUSY
breaking parameters as follows: The higgsino mass is set to be degenerate in squark masses
(µH = MS). The masses of winos and gluinos are set to be 3 TeV and 10 TeV, respectively.
A-terms are set to be 0 since these are generated with the loop suppression through AMSB.
The proton decay rate via the dimension-five operators are estimated with the color-triplet
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5.2 Proton lifetime via dimension-five operators

Figure 13: Higgs mass and proton decay in the high-scale SUSY breaking. In this plot, we
set wino mass M2 = 3TeV, gluino mass M3 = 10TeV, and A-terms A = 0. We use the Higgs
mass, the strong coupling, and top pole mass as input parameters. mh = 125.9 ± 0.4GeV,
αS(mZ) = 0.1184(7) and mpole

t = 173.07 ± 0.52 ± 0.72GeV. Error bar of the region where the
SM Higgs mass is realized indicates the input errors of mh, αS(mZ), and mpole

t .

Higgs mass obtained by using the 2-loop RGEs and the 1-loop threshold corrections.
A black solid line shows the current experimental limit by Super-Kamiokande (τ(p →

K+ + ν) > 5.9 × 1033years) and a gray solid line displays the sensitivity of the future ex-
periment of Hyper-Kamiokande (τ(p → K+ + ν) > 2.5 × 1034years). Solid and dotted blue
lines indicate the mass of the color-triplet Higgs multiplets. Solid line displays the boundary
where the mass of color-triplet Higgs boson is equal to the Planck scale ∼ 2 × 1018GeV. The
dotted blue lines display the boundaries where the mass of the color-triplet Higgs bosons is
equal to the GUT scale (∼ 2× 1016GeV) and 1017GeV. That is, unification of the couplings of
the SM gauge interaction can be improved in the region enclosed by dotted lines.

Red lines display the region where the mass of the observed Higgs boson can be realized
in the high-scale SUSY breaking scenario. We use mh = 125.9± 0.4GeV, αS(mZ) = 0.1184(7)
and mpole

t = 173.07 ± 0.52 ± 0.72GeV as input parameters. The center line of these lines
displays that the mass of the observed Higgs boson can be realized in the high-scale SUSY
breaking scenario. We draw this line by using the central value of the Higgs boson mass,
top Yukawa coupling, and the strong gauge coupling constant. Ambiguities of these values
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5.2 Proton lifetime via dimension-five operators

Figure 14: Higgs mass and proton decay in the high-scale SUSY breaking with MS = m3/2.
In this scenario, gaugino masses are proportional to MS/16π2. In this plot, we set the ratio
of gaugino masses M3/M2 = 3, and A-terms A = 0. We use the Higgs mass, the strong cou-
pling, and top pole mass as input parameters. mh = 125.9 ± 0.4GeV, αS(mZ) = 0.1184(7),
and mpole

t = 173.07 ± 0.52 ± 0.72GeV. Error bar of the region where the SM Higgs mass is
realized indicates the input errors of mh, αS(mZ), and mpole

t .

are shown as error bars. When we draw these lines, we use 2-loop RGEs for the quartic
coupling of Higgs boson, the gauge couplings, and Yukawa couplings. Also, we determined
tan β at the SUSY breaking scale MS by using the 1-loop threshold correction for the quartic
coupling. Note however that we must determine the Higgs mass by using the effective
potential below ∼ 10TeV.

Finally, in Fig. 14, we show the case MS = m3/2. In this case, MGUT = M2/3
X M1/3

Σ is
changed with MS since MGUT ∝ (M3M2)−1/9 ∝ (m3/2)

−2/9. In particular, this case cor-
responds to such as the pure gravity mediation scenario [66]. If we associate MX with
MGUT, we set a limit on the SUSY breaking scale from above through another decay mode
(p → π0 + e+). The masses of the X-boson and the adjoint Higgs are obtained as:

MX = 5
√

2g5V, MΣ =
5
2

f V (5.2.5)
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5.2 Proton lifetime via dimension-five operators

where g5 is the gauge coupling of SU(5) and f is the self-coupling constant of the adjoint
Higgs, which are defined in Eq. (3.2.7). V is the VEV of the adjoint Higgs. Thus, we have

MGUT = 5g2/3
5 f 1/3V. (5.2.6)

If we assume f = 23/2g5, then we have MGUT = MX. For this decay mode, the hadron
matrix elements are given by lattice simulation [85]:

⟨π0|ϵabc(ua
Rdb

R)u
c
L|p⟩ = −0.103 GeV2,

⟨π0|ϵabc(ua
Ldb

L)u
c
L|p⟩ = 0.133 GeV2.

(5.2.7)

Then, the proton decay rate for this mode is given by

Γ(p → π0e+) =
(m2

p − m2
π0)

2

32πm3
p

∣∣∣M(p → π0e+)
∣∣∣
2

, (5.2.8)

where mπ0 is the mass of the neutral pion and M(p → π0e+) is the amplitude for the decay
p → π0 + e+.

The lines in the right side of Fig. 14 correspond to the recent lower bound and future
sensitivity for the X-boson exchange decay mode(p → π0 + e+). These recent and future
lower bounds are 1.4 × 1034 years and 1.0 × 1035 years, respectively [88].

In Fig. 14, we draw the lines corresponding to the case of f = 2g5, 23/2g5, and 4g5 for
the Super-Kamiokande constraint. A black line in the right side of this figure corresponds
to the case MGUT = MX, ( f = 23/2g5). The light green line (the right side boundary) and the
dark green line (the left side boundary) are corresponds to the case f = 2g5 and f = 4g5,
respectively. This figure shows that the SUSY breaking scale is bounded from above through
the decay rate for the mode p → π0 + e+. However, this constraint depends on the self-
coupling of the adjoint Higgs. If this coupling is much small, the SUSY braking scale is not
constrained strictly.

The gray line in the right side of Fig. 14 describes the future sensitivity of the Hyper-
Kamiokande. When we draw this line, we assume the case MGUT = MX. This figure also
shows that the future experiment can investigate the broad region of the SUSY breaking scale
since MGUT does not get lower drastically when the gaugino mass becomes larger. Thus, the
Hyper-Kamiokande experiment is important in order to bound the SUSY breaking scale
in this scenario. Note that this constraint becomes more severe if the gaugino mass-ratio
M3/M2 is larger than 3. Note also that the gluino direct search in the collider experiment
exclude the region MS < O(10TeV) in this figure since the mass of the gluino is related to
the squark masses.
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6 Conclusion and Discussion
In this thesis, we have revisited the minimal SUSY SU(5) GUT. It is believed that the min-
imal SUSY SU(5) GUT is excluded due to the inconsistent prediction for the proton decay.
First of all, we have evaluated the mass spectrum of the GUT particles, the color-triplet
Higgs multiplets, the X-bosons, and the adjoint Higgs bosons in the high-scale SUSY sce-
nario. Then, we also have evaluated the proton lifetime via the color-triplet Higgs boson in
the high-scale SUSY breaking scenario.

Grand unification in the high-scale SUSY

We have evaluated the mass spectrum of the GUT particles in the high-scale SUSY scenario.
It is revealed that the mass of the color-triplet Higgs multiplets can have the same order
of the other GUT particles (∼ 1016GeV), which has the mass around 1014 ∼ 1015GeV in
the low-scale SUSY breaking scenario. This implies that the threshold corrections for gauge
couplings at the GUT scale are small, and also the unification of gauge couplings is improved
in the high-scale SUSY scenario. We also have found that MGUT = M2/3

X M1/3
Σ becomes

slightly small in this scenario. Although this does not spoil neither the unification of the
GUT-particle mass scale nor improvement of the gauge coupling unification, MGUT affects
the proton decay via X-bosons. For example, if the X-boson mass is set to be MX = 0.8 ×
1016GeV, we have the lifetime of this decay mode as τ(p → π0 + e+) ∼ 5 × 1034 [years].
For this decay mode, the current observation lower limit is obtained as τexp(p → π0 +
e+) > 1.4 × 1034[years] by Super-Kamiokande experiment. In future experiment, 1.0 × 1035

years partial lifetime can be achieved, which corresponds to eight years running of Hyper-
Kamiokande [88]. Thus, this decay mode may be caught by future experiment if the high-
scale SUSY breaking scenario is realized in our world.

Proton decay in the minimal SUSY SU(5) GUT with the high-scale SUSY scenario

Next, we also have evaluated the proton decay mode (p → K++ ν) caused by the dimension-
five operators via the color-triplet Higgs multiplets in the high-scale SUSY breaking sce-
nario. Though the theoretical prediction for this partial lifetime is much smaller than the
experimental bounds (τp > 5.9 × 1033 years) in the low-scale SUSY scenario, the prediction
in the high-scale SUSY can be evaded from this bound. This is because not only SUSY break-
ing scale is sufficiently high but the color-triplet Higgs multiplets obtain a heavy mass in the
high-scale SUSY breaking scenario. In particular, we also have revealed that the proton life-
time is consistent in a broad region where the observed Higgs boson mass is realized. These
results indicate that this decay mode may be discovered in the future experiment, Hyper-
Kamiokande. In point of view of the model buildings, the additional symmetries which
suppress or prohibit the vector-like mass term µH HC HC are not needed in the high-scale
SUSY breaking scenario.
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A Conventions and Notations
In this appendix, we will give notations, formulae for gamma matrices, and physical con-
stants used in this thesis.

A.1 Conventions and formulae
Conventionally, we use the natural unit.

c = h̄ = kB = 1 (A.1.1)

where c is the speed of light (c = 299792458m/s), h̄ = h/2π is the (reduced) Planck constant
(h̄ = 6.58211928(15)× 10−22MeVs), and kB is the Boltzmann constant (kB = 8.6173324(78)×
10−5eVK−1). Thus, all of dimensionful constants are evaluated in units of energy.

Conventions

We use the metric tensor in flat spacetime,

ηµν = diag(+,−,−,−). (A.1.2)

We also use the definition of the totally anti-symmetric tensor as ϵ0123 = 1.
The Grassmann derivative and the Grassmann integral measure are defined as:

∂

∂θα θβ = δ
β
α ,

∂

∂θ†
α̇

θ†
β̇
= δα̇

β̇
, (A.1.3)

d2θ = −1
4

dθαdθβϵαβ, d2θ† = −1
4

dθ†
α̇dθ†

β̇
ϵα̇β̇. (A.1.4)

Then, the integral of the products of the Grassmannian coordinate θθ ≡ θαθα, θ†α̇θ†
α̇ are

obtained as the following form;
∫

d2θ(θθ) = 1,
∫

d2θ†(θ†θ†) = 1. (A.1.5)

Formulae

For D dimensional γ matrices, we will give the definition of the anti-commutating relation
of the gamma matrices and γ5.

{γµ, γν} = 2ηµν,

γ5 = iγ0γ1γ2γ3.
(A.1.6)
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A.1 Conventions and formulae

By using these definitions, we obtain formulae for the gamma matrices as;

(γ5)2 = 1,
{

γ5, γν
}
= 0,

γµγµ = D,
γµγνγµ = −(D − 2)γν.

(A.1.7)

In the case we consider the supersymmetric theories (that is, we set D = 4 below argu-
ments), it is convenient to use two-component (Weyl) spinors. Feynman rules for two-
component spinors differ from those of four-component spinors. Thus we need to translate
the formulae of the gamma matrices into those in terms of two-component spinors. By using
the Chiral (Weyl) representation,

γµ =

(
0 σµ

σµ 0

)
(A.1.8)

where σ, σ̄ are the covariant Pauli matrices which are defined as;

σµ ≡ (1, σ1, σ2, σ3), σµ ≡ (1,−σ1,−σ2,−σ3). (A.1.9)

σi (i = 1, 2, 3) are the Pauli matrices defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1.10)

Furthermore, we obtain γ5 in terms of two-component spinors;

γ5 =

(
−1 0
0 1

)
. (A.1.11)

Formulae for gamma matrices are reduced to formulae for Pauli matrices.

(σµ)αα̇(σµ)
β̇β = −2δ

β
α δ

β̇
α̇

(σµ)αα̇(σµ)ββ̇ = −2ϵαβϵβ̇β̇

(σµ)α̇α(σµ)
β̇β = −2ϵαβϵβ̇β̇

(A.1.12)

[σµσν + σνσµ]βα = 2ηµνδ
β
α

[σµσν + σνσµ]
β̇
α̇ = 2ηµνδ

β̇
α̇

(A.1.13)
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A.2 loop integrals

A.2 loop integrals
When we evaluate quantum corrections, we need to carry out the calculations of loop mo-
mentum integrals. In particular, we use the dimensional regularization for the non-SUSY
case or the dimensional reduction for the SUSY case when we regularize the loop integrals.
Now, we give the expression of the loop integrals in D-dimensional momentum space:

∫ dDl
(2π)D

1
[l2 − ∆2]n

=
(−1)ni∆D−2n

(4π)D/2
Γ(n − D/2)

Γ(n)
,

∫ dDl
(2π)D

l2

[l2 − ∆2]n
=

(−1)n−1i∆D−2n+2

(4π)D/2
Γ(n − D/2)

Γ(n)
.

(A.2.1)

where Γ is the gamma function defined as;

Γ(x) ≡
∫ ∞

0
dttx−1e−t. (A.2.2)

The expansion of Γ function near origin is given by:

Γ(x) ∼ 1
x
− γ +O(x) (A.2.3)

where γ = 0.5772 . . . is the Euler constant.

A.3 Physical constants
We use some physical constants as input parameters when we evaluate the lifetime of pro-
ton; the gauge coupling constants for the SM gauge group SU(3)C × SU(2)L × U(1)Y, the
masses of quarks, leptons, gauge bosons, and the Higgs boson, and the elements of the CKM
matrix. In addition, when we estimate the decay rate of proton for each mode, we need to
use the masses of hadrons. These values are also summarized in this appendix.

Electroweak parameters

When we evaluate various values by numerical calculations, we use precise values of elec-
troweak parameters as input parameters. In Table 6, we summarize these physical constants.
Some of them is evaluated at mZ renormalization scale in MS scheme.

By using these parameters, we obtain the gauge coupling constants and the VEV of the
Higgs boson, and quartic coupling in the Higgs potential. The fine structure constant is
related to the electromagnetic charge and αS is also related to the strong gauge coupling
constant: αEM = e2/4π and αS = g2

S/4π. The electromagnetic coupling is related to the
weak gauge coupling g and the hypercharge coupling g′;

e =
gg′√

g2 + g′2
= g sin θW (A.3.1)
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A.3 Physical constants

Table 6: Electroweak parameters

name value
1

αEM(mZ)
Fine structure constant 127.9 ± 0.2

sin2 θW(mZ) Weinberg angle 0.2326 ± 0.0008

αS(mZ) Strong coupling constant 0.118 ± 0.007

mZ Z boson mass 91.1876 ± 0.0021 GeV

mW W boson mass 80.385 ± 0.015 GeV

mh Higgs boson mass 125.9 ± 0.4GeV

This relation means that we obtain the weak gauge coupling is obtained from the fine struc-
ture constant and the Weinberg angle. The masses of the weak gauge bosons are related to
the gauge couplings and the VEV of the Higgs boson v:

mW =
1
2

gv, mZ =
1
2

√
g2 + g′2v =

mW
cos θW

. (A.3.2)

Thus, the VEV of the Higgs boson is given by the weak gauge coupling and the mass of the
massive gauge bosons. The scalar potential for the standard model Higgs boson is given by;

V(H) = −µ2H†H +
λ

2
(H†H)2. (A.3.3)

This potential gives the mass of the physical Higgs boson mh after expanding the Higgs field
around the VEV.

m2
h = λv2. (A.3.4)

This relation tells us that the quartic coupling of the Higgs potential is obtained from the
VEV and the mass of the Higgs boson. It is possible to treat this quartic coupling as known
parameter since the Higgs boson is discovered and the mass of the Higgs boson is estab-
lished at the collider experiments.

We use not only these parameters in Table 6 but also the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [26, 27] as input parameters. The mass and weak eigenstate for the left-
handed down-type quarks are associated with each other by the CKM matrix.

UCKM =

⎛

⎝
Uud Uus Uub
Ucd Ucs Ucb
Utd Uts Utb

⎞

⎠ . (A.3.5)
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A.3 Physical constants

These elements are estimated by some experiments, and the average of them gives the mag-
nitude of CKM elements as follows:

UCKM =

⎛

⎝
0.97425 ± 0.00022 0.2252 ± 0.0009 (4.15 ± 0.49)× 10−3

0.230 ± 0.011 1.006 ± 0.023 (40.9 ± 1.1)× 10−3

(8.4 ± 0.6)× 10−3 (42.9 ± 2.6)× 10−3 0.89 ± 0.07

⎞

⎠ . (A.3.6)

This matrix is parametrized by three real parameters “CKM angle” and one phase factor
“KM phase”∗.

U =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ , (A.3.7)

where cij = cos θij, sij = sin θij. In our calculation, we used the Wolfenstein parametrization
[89].

s12 ≡ λ, s23 ≡ Aλ2, s13eiδ ≡ Aλ3(ρ̄ + iη̄)
√

1 − A2λ4
√

1 − λ2[1 − A2λ4(ρ̄ + iη̄)]
. (A.3.8)

These values have been measured by various experiments. The averaged value is [24]

λ = 0.22535 ± 0.00065, A = 0.811+0.022
−0.012,

ρ̄ = 0.131+0.026
−0.013, η̄ = 0.345+0.013

−0.014.
(A.3.9)

Mass parameters

We also use the masses of quarks and leptons as input parameters for Yukawa couplings.
For the light quarks (up, down, and strange quarks), masses are estimated in the MS scheme
which is mass-independent renormalization scheme at µ = 2GeV. For the heavy quark
(charm and bottom quarks; except the top quark), masses are estimated in the MS scheme
at each mass scale. The mass of the top quark is obtained as a pole mass. The mass of
the charged leptons (electron, muon, and tau lepton) are estimated by using various ways.
The mass of an electron are determined by measuring the ratio me/mA where mA denotes
the mass of a nucleus. The muon’s mass is obtained from the muon-electron mass ratio
measured of Zeeman transition frequencies in muonium which is a bound state composed
of an anti-muon and an electron. The mass of a tau lepton is established by measuring
e+e− → τ+τ− and tau lepton decay. The masses of all of the standard model fermons are
summarized in Table 7.

∗There are 9 degrees of freedom for a general unitary matrix U because of UU† = 1. Three of them are
rotating angles which are real parameters and the remaining 6 parameters are phases. By using phase rotation
for 6 quarks, 5 phases are removed since one of six phases rotation corresponds to a flavor-blind phase rotation.
This means that the PMNS matrix which is the unitary matrix relating the flavor eigenstate (which is equivalent
to the weak eigenstate of charged leptons) to the mass eigenstate in the lepton sector has 3 real angles and 3
phases since neutrinos are neutral fermions which must have no phase rotation
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A.3 Physical constants

Table 7: The masses of quarks and leptons (µ denotes renormalization scale)

name µ value
mu up quark 2 GeV 2.3+0.7

−0.5 MeV
md down quark 2 GeV 4.8+0.7

−0.3 MeV
me electron / 0.510998928 ± 0.000000011 MeV

mc charm quark mc 1.275 ± 0.025 GeV
ms strange quark 2 GeV 95.0 ± 5 MeV
mµ muon / 105.6583715 ± 0.0000035 MeV

mt top quark Pole mass 173.07 ± 0.6 ± 0.8 GeV
mb bottom quark mb 4.18 ± 0.03 GeV
mτ tau / 1.776 ± 0.16 GeV

When we evaluate proton decay rates for each mode, we need to use hadron masses
which are described in Table 8. Since we use the mass of proton, neutron, pions, and charged
K meson, we summarize only these values in Table 8.

Table 8: The masses of Hadrons

name value
mp proton 938.27 MeV
mn neutron 939.57 MeV
mπ0 neutral pion 134.98 MeV
mπ± charged pion 139.57 MeV
mK charged K meson 493.677 ± 0.016 MeV

For the hadrons consisted of only up quarks and down quarks (proton, neutron, and
pions), their masses are measured much precisely though we do not write down these ex-
pressions explicitly.
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B Properties of SUSY
In this appendix, we will give some properties of supersymmetric theories. In particular, the
non-renormalization theorem for superpotentials and gauge kinetic terms is impotent for
our analysis since we use the dimension-five operator which is included in a superpotential.
In the N = 1 supersymmetric theories, there is no well-established renormalization scheme
though we use dimensional reduction as the renormalization scheme in the SUSY theories.

B.1 SUSY algebra
In general, the algebra is schematically constructed as follows:

{Q, Q′} = X
[X, X′] = X′′

[Q, X′] = Q′′
(B.1.1)

where Q, Q′, . . . are the fermionic generators and X, X′ . . . are the bosonic generators. As
for the bosonic generators, the spin-0, -1, and -2 generators are allowed due to the Coleman-
Mandula theorem. These generators are decomposed into the irreducible representation
of the homogeneous Lorentz group. Thus, the spin-3/2 or the higher fermionic operators
are forbidden. The most general supersymmetric algebra for four dimensional spacetime is
given by [90].

[
Pµ, Pν

]
= 0

[Pµ, Mρσ] = i(ηµρPσ − ηµσPρ)[
Pµ, QL

α

]
=
[
Pµ, Qα̇L

]
= 0

[
Pµ, Bl

]
=
[

Pµ, al,⟨LM⟩Bl

]
= 0

{
QL

α , Qβ̇M

}
= 2σ

µ

αβ̇
PµδL

M
{

QL
α , QM

β

}
= ϵαβX⟨LM⟩

{
Qα̇L, Qβ̇M

}
= ϵα̇β̇X†

⟨LM⟩[
X⟨LM⟩, Qα̇K

]
=
[

X⟨LM⟩, QK
α

]
= 0

[
X⟨LM⟩, X⟨KN⟩

]
=
[

X⟨LM⟩, Bl

]
= 0

[Bl, Bm] = iC k
lm Bk[

QL
α , Bl

]
= SL

l MQM
α

[
Qα̇L, Bl

]
= −S∗l M

L Qα̇M.

(B.1.2)
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B.2 Spinor relations

where L, M, . . . are the indices of the generators of supersymmetry. X and X† are defined as

X⟨LM⟩ = al,⟨LM⟩Bl, X†
⟨LM⟩ = a∗l,⟨LM⟩B

l. (B.1.3)

Pµ, Mµν are generators of translation and Lorentz rotation, respectively. Q, Q are grassmann
odd generators. Bl compose compact Lie algebra. And ⟨LM⟩ denotes anti-symmetric in-
dices. Especially, this algebra is simplified when we limit the argument to N = 1.

[
Pµ, Pν

]
= 0

[Pµ, Mρσ] = i(ηµρPσ − ηµσPρ)[
Pµ, Qα

]
=
[
Pµ, Qα̇

]
= 0

[
Pµ, Bl

]
= 0

{
Qα, Qβ̇

}
= 2σ

µ

αβ̇
Pµ

{
Qα, Qβ

}
=
{

Qα̇, Qβ̇

}
= 0

[Bl, Bm] = iC k
lm Bk

[Qα, Bl] =
[
Qα̇, Bl

]
= 0.

(B.1.4)

B.2 Spinor relations
Gamma matrices in chiral representation are given by

γµ ≡
(

0 σ
µ

αβ̇

σµα̇β 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−δ

β
α 0

0 δα̇
β̇

)
. (B.2.1)

Also, we define the anti-symmetric tensor as

Γµν ≡ i
4
[γµ, γν], σµν ≡ i

4
(σµσν − σνσµ), σµν ≡ i

4
(σµσν − σνσµ). (B.2.2)

These tensor are related as:

Γµν ≡
(

σµν 0
0 σµν

)
(B.2.3)

Chiral projection operators are defined as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

PL ≡ 1
2
(1 − γ5) =

(
δ

β
α 0
0 0

)

PR ≡ 1
2
(1 + γ5) =

(
0 0
0 δα̇

β̇

) . (B.2.4)
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B.2 Spinor relations

Now, we divide Dirac spinor Ψ(x) into two mass-degenerate, opposite charged Weyl spinors
χα(x), ηα(x) as:

Ψ(x) =
(

χα(x)
η†α̇(x)

)
. (B.2.5)

The Hermitian conjugate of Weyl-spinor is defined as:

(ψα)
† = (ψ†)α̇ ≡ ψ†

α̇, (ψ†α̇)† = ψα. (B.2.6)

These relation means that the Hermite conjugate of the left-handed Weyl spinor is the right-
handed Weyl spinor, and vice versa. Then, we have

Ψ(x) = Ψ†(x)A

= (χ†
α̇, ηα)

(
0 δα̇

β̇

δ
β
α 0

)
= (ηβ, χ†

β̇
)

(B.2.7)

and

ΨC(x) = CΨT
(x)

=

(
ϵαβ 0
0 ϵα̇β̇

)(
ηβ

χ†
β̇

)
=

(
ηα

χ†α̇

)
.

(B.2.8)

Then, we also have

ΨL(x) = PLΨ(x) =
(

χα(x)
0

)
, ΨR(x) = PRΨ(x) =

(
0

η†α̇(x)

)
. (B.2.9)

We are able to divide all of the Dirac bilinear forms into the bilinear forms in terms of the
Weyl spinors:

ΨiPLΨj = ηiχj, ΨiPRΨj = χ†iη†
j

ΨiPLΨC
j = ηiηj, ΨiPRΨC

j = χ†iχ†
j

ΨiCPLΨj = χiχj, ΨiCPRΨj = η†iη†
j

(B.2.10)

ΨiγµPLΨj = χ†iσµχj

ΨiγµPRΨj = ηiσµη†
j

(B.2.11)

ΨiΓµνPLΨj = ηiσµνχj

ΨiΓµνPRΨj = χ†iσµνη†
j

(B.2.12)
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Thus, we have the transformation between the bilinear forms of the Dirac spinor and the
Weyl spinors:

ΨiΨj = ηiχj + χ†iη†
j ,

Ψiγ5Ψj = −ηiχj + χ†iη†
j ,

ΨiγµΨj = χ†iσµχj + ηiσµη†
j ,

Ψiγµγ5Ψj = −χ†iσµχj + ηiσµη†
j ,

ΨiΓµνΨj = ηiσµνχj + χ†iσµνη†
j ,

ΨiΓµνγ5Ψj = −ηiσµνχj + χ†iσµνη†
j .

(B.2.13)

By using the formulae for the Pauli matrices, we have

(χ†iσµχj)(η
kσµη†

l ) = χ†i
α̇ (σ

µ)α̇αχjαηkβ(σµ)ββ̇(η
†
l )

β̇

= 2(χ†i
α̇ η†α̇

l )(χjαηkα).
(B.2.14)

Similarly we obtain

(χ†iσµχj)(χ
k†σµχl) = 2(ϵα̇β̇χi†

α̇ χ†k
β̇
)(ϵαβχjαχlβ)

(ηiσµη†
j )(η

kσµη†
l ) = 2(ϵα̇β̇(η

†
j )

α̇(η†
l )

β̇)(ϵαβηiαηkβ).
(B.2.15)

From these relations, we obtain the Dirac spinor relations, which we have used in the calcu-
lation of the four-fermi operators generated by the X-boson mediation.

(Ψi
γµPLΨj)(Ψ

k
γµPLΨl) = 2(ΨkPRΨiC)(ΨC jPLΨl)

= 2(ΨiPRΨkC)(ΨC
lPLΨj)

(Ψi
γµPRΨj)(Ψ

k
γµPLΨl) = 2(ΨiPRΨl)(Ψ

kPLΨj).

(B.2.16)

B.3 Regularization
When we evaluate quantum (radiative) corrections, some of them diverge due to the infinite
momentum integrals. Since the S matrix, however, is finite, these divergence must be regu-
larized. It seems that classical symmetries are usually preserved in the effective Lagrangian
except some symmetries; for instance the scale (conformal) invariance and the global U(1)
axial symmetry (the Adler-Bardeen theorem [91]).

If the regularization method breaks these symmetries, we obtain the effective theory
without these symmetries. For example, the Pauli-Villars regularization can not preserve
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B.3 Regularization

the non-abelian gauge symmetries [92]. In 1972, G. ’t Hooft and M. J. G. Veltman pub-
lished the method which preserves manifestly the non-abelian gauge symmetries [93], the
so-called dimensional regularization (DREG). Now, it is well-known as the gauge-invariant
regularization scheme.

The modified minimal subtraction (MS scheme) with using the DREG is the following
procedure. We carry out the analytic continuation of the dimension of the loop momentum;
4 → D dimension. We set the dimension of the momentum integral, D = 4 − ϵ, and then,
we subtract the 1/ϵ term by the re-definition of the operator normalization.

Though this procedure preserve the gauge invariance, the SUSY invariance is not pre-
served in the SUSY Yang-Mills (SYM) theories. In the SYM, the bosonic degrees of freedom
(gauge bosons) are equal to the fermionic ones (gauginos). In the 4− ϵ-dimensional theories,
the number of the gauge bosons is less than that of the gauginos.

In 1979, W. Siegel modified the dimensional regularization by the compactification or the
dimensional reductions [74]. Thus, the number of fields does not change while we carry out
the momentum integral in D-dimensional space. However, there remain the ambiguity with
dimensional reduction (DRED) associated with treating the Levi-Civita tensor ϵµνρσ.

Now, we introduce DRED by using a concrete model which includes a Yang-Mills mul-
tiplet and a multiplet of spin-1/2. The bare Lagrangian is given as:

L = −1
4

(
Fa

0µν

)2
− 1

2α
(∂µ A0µ)

2 + ca†
0 ∂µ(Dµc0)

a + iψα
0γµ(Dµψ0)

α (B.3.1)

where we define as:

Fa
0µν = ∂µ Aa

0ν − ∂ν Aa
0µ + g f abcWb

µWc
ν ,

(Dµc0)
a = ∂µca

0 + g f abc Ab
0µcc

0,

(Dµψ0)
α = ∂µψα

0 − igAa
0µ(T

a)αβψ
β
0 .

(B.3.2)

In DRED, we assume that all of the fields depend on the D-dimensional coordinates but
not four-dimensional coordinates. µ, ν, . . . denote the four-dimensional indices and i, j, . . .
denote D-dimensional indices. Then, we divide the Lagrangian into two parts; one includes
only the D-dimensional gauge fields, the other includes only the remnant fields as follows:

Aa
µ(xj) =

{
Aa

i (xj), Aa
σ(xj)

}
, (B.3.3)

also, ∂µ = {∂i, ∂σ}, and the divided Lagrangians are obtained as follows:

LD = −1
4

(
Fa

0ij

)2
− 1

2α
(∂i A0i)

2 + ca†
0 ∂i(Dic0)

a + iψα
0γi(Diψ0)

α

Lϵ =
1

2α
(Di A0σ)

2 − gψ
α
0γσTa Aa

0σψ − g2

4
f abc f ade Ab

0σ Ac
0σ′ Ad

0σ Ae
0σ′ .

(B.3.4)
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The gauge transformation of these fields is given:

δWa
i = ∂iΛa + g f abcWb

i Λc

δWa
σ = g f abcWb

σΛc

δψα = ig(Taψ)αΛa
(B.3.5)

This means that the Wa
σ behaves as the scalar field belonging to the adjoint representation;

the so-called ϵ-scalar. In the MS scheme (that is, in the DREG), Lϵ is neglected.
The difference between the MS scheme and the DR scheme is the product of the gamma

matrices. γµγµ is D in the MS scheme, on the other hand, is four in the DR scheme. Due to
this property, the SUSY Ward identity is preserved in the DR scheme [75].

On the other hand, in the DR scheme, there are ambiguities in the calculation of the Levi-
Civita tensor. For simplicity, we consider the two-dimensional case. In D < 2 dimension,
we define the gamma matrices, the metric tensor and the ϵ-tensor with hat.

gµνgµν = 4, ĝµν ĝµν = gijgij = D

ĝµνg λ
ν = ĝµλ, ĝµνγν = γ̂µ

(B.3.6)

ϵ̂µν ≡ ĝµρ ĝνσϵρσ (B.3.7)

A tensor defined as follows:

Aµν ≡ ϵ̂µνϵ̂ρσϵ̂ρσ (B.3.8)

includes an ambiguities in the two different calculations. On the one hand, we obtain a
result by applying the formula for ϵ̂µνϵ̂ρσ to this value

ϵ̂µνϵ̂ρσϵ̂ρσ = (ĝµρ ĝνσ − ĝµσ ĝνρ)ϵ̂ρσ

= 2ϵ̂µν.
(B.3.9)

On the other hand, we also obtain another result by applying the formula for ϵ̂ρσϵ̂ρσ to this
value

ϵ̂µνϵ̂ρσϵ̂ρσ = ϵ̂µν ĝρξ ĝση ĝρα ĝσβϵξηϵαβ

= (D2 − D)ϵ̂µν.
(B.3.10)

As a result, we obtain

(D + 1)(D − 2)ϵ̂µν = 0. (B.3.11)
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B.3 Regularization

This means that this equation is only satisfied in the case D = −1, 2, or ĝµν = 0 since in
the 2-dimensional theories ϵµν is not zero. Thus, we find that the calculation of the gamma
matrices includes mathematically inconsistency.

In Ref. [77], they have shown the formulation of the DRED in a mathematically consistent
way. In DRED, the D-dimensional space must be the subset of the 4-dimensional space in
order to define the ϵ-scalar and the metric ĝµν projecting to the D-dimensional space. It
seems, however, that the construction of such D-dimensional space can not be realized since
the 4-dimensional space is a finite vector space.

This complexity can be solved partially by embedding this four-dimensional space in the
infinite vector space which is called “quasi-four-dimensional” space (Q4S). The operators
which live on Q4S behave as having the appropriate properties which the operators living
on the 4-dimension space. For this way, we can construct the DRED mathematically consist
way. On the other hand, the Fierz identity is no longer valid since the Dirac algebra is
extended to the infinite dimensional one.

This inconsistency (mathematically inconsistency or no validity of the Fierz identity)
leads that there is a non-vanishing variation of Lagrangian under the SUSY transforma-
tion. To see this fact, we perform the SUSY transformation of the SUSY gauge theory in the
Wess-Zumino gauge.

LS = −1
4

FaµνFa
µν +

i
2

λ
a
γµ(Dµλ)a +

1
2

D2, (B.3.12)

where Fµν, λ, and D are a field strength tensor for the gauge field, a gaugino, and an auxil-
iary field. The SUSY transformation for these fields are given in terms of the 4-component
spinors; ⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δAa
µ = − 1√

2
ϵγµλa,

δλa =
i

2
√

2
Fa

µνγµγνϵ +
1√
2

Daγ5ϵ,

δDa =
i√
2

ϵγµγ5(Dµλ)a.

(B.3.13)

We obtain the SUSY transformation of the Lagrangian;

δLS =
i√
2

[
1
2

g f abc(λ
a
γµλb)(ϵγµλc) + ∂µ

{
i
4

λ
a
γµγργσϵFa

ρσ +
1
2

λ
a
γµγ5ϵDa

}]
. (B.3.14)

In four-dimensional theories, we can easily check that the first term is vanished by using the
Fierz identity. The insertion of LS leads the breaking of SUSY in the regularization at higher
loop contributions.

In N = 2 and N = 4 supersymmetric theories, the structures of the divergence are mild
[75]; there is only an one-loop divergence in N = 2 SUSY theories and no divergence in
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B.4 Non-renormalization theorem

N = 4 SUSY theories. Although these properties are attractive, the matter fields are no
longer chiral fields; that is, the matter fields are a pair of a certain representation T and its
complex representation T∗ or belong to an adjoint representation since there are two or more
SUSY charges. Thus, for constructing the realistic model, it seems that we do not use these
properties.

B.4 Non-renormalization theorem
In the supersymmetric theories, there is a spatial property called the non-renormalization
theorem [48]. Thanks to this theorem, there is no vertex correction for the interactions which
are generated from superpotential in perturbative theories. We consider the case that there
is the global symmetry

G ≡ U(Nf )L × U(Nf )R × U(1)R (B.4.1)

in the free field theories classically. Nf is the number of flavor, which characterizes all of
fields as some species. L and R denotes left-handed and right-handed chiral superfields.
The U(1)R is the abelian R symmetry.

Interaction terms in general break these global symmetry explicitly. We treat the coupling
constants for these interactions as the spurion superfields whose scalar components obtain
the VEVs by the spontaneous symmetry breaking∗. Then, the effective Lagrangian should
be invariant under these global symmetry.

B.4.1 Non-renormalization theorem for the Wess-Zumino model

Now let consider the Wess-Zumino(WZ) model as a concrete example. At tree-level, the
superpotential of the WZ model is given as

Wtree = mφ2 + λφ3. (B.4.2)

In this model, there is an only left-chiral superfield φ. Thus, the global symmetry is

U(1)× U(1)R, (B.4.3)

if there is no interaction terms. We assign the U(1) charges to all of fields not only φ but also
m and λ since we treat the couplings as spurion field.

⎧
⎪⎨

⎪⎩

φ : (gφ, rφ)

m : (−2gφ, 0)
λ : (−3gφ,−rφ)

(B.4.4)

∗The VEV of a scalar component of a spurion chiral superfield does not break supersymmetry since the
scalar field appears with derivative in the SUSY transformation.
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B.4 Non-renormalization theorem

where we define as (U, R) ≡ (U(1) charge, U(1)R charge). The R-charge assignment is de-
fined so that the R-charge of the superpotential is equal 2. On the other hand, the superpo-
tential is U(1) neutral since the U(1) symmetry is exact symmetry in the limit m = 0, λ = 0.

Since the effective superpotential has U(1)× U(1)R symmetry, the effective superpoten-
tial should have the form as

Weff = mφ2 f
(

λφ

m

)
. (B.4.5)

Only λφ/m is neutral under both of U(1) and U(1)R. f (x) is the holomorphic function.
Thus, in general, the interaction term should have the form as follows:

Weff = ∑
n

λn−2m−n+3φn. (B.4.6)

Furthermore, we consider the theories that are consistent in the massless limit (m → 0)
and the weak coupling limit (λ = 0). In the massless limit m = 0, n ≤ 3 is required. In the
weak coupling limit λ = 0, n ≥ 2 is also required. Thus, since n = 2 and 3 are only allowed,
the effective superpotential should have the form as:

Weff = mφ2 + λφ3 = Wtree. (B.4.7)

This theorem implies that there is no additional effective operators and no vertex correc-
tions in the effective superpotential at not only all of the perturbation levels but also non-
perturbation effects.∗

B.4.2 Non-renormalization theorem for SUSY gauge theories

Next we consider the non-renormalization theorem for the SUSY gauge theories perturba-
tively. A gauge kinetic term with the holomorphic gauge coupling is given by

SSYM =
∫

d4xd2θ
τa

16
W aαW a

α + (h.c.). (B.4.8)

The holomorphic gauge coupling is defined as follows:

τa =
1
g2

a
− i

Θa

8π2 (B.4.9)

where ga is the gauge coupling. Θa is the Θ-angle which breaks CP and characterizes the
non-perturbative effects. Indeed, the imaginary part of the holomorphic gauge coupling
generates the total derivative term

Θa

32π2

∫
d4xϵµνρσFµνFρσ = nΘa, (B.4.10)

∗ It is also made sure that this non-renormalization theorem is correct at all of the perturbation levels by
using the supergraph in [76].
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B.4 Non-renormalization theorem

where n is the winding number of the gauge field. Thus, when we calculate perturbative
corrections, Θa is not appear in any amplitudes. When we define the intrinsic scale |Λ| as
the scale where the Landau pole for the gauge coupling exists g−1(|Λ|) = 0, we obtain this
at scale µ;

1
g2

a(µ)
= − b

8π2 ln
|Λ|
µ

, (B.4.11)

where for an N = 1 SUSY SU(N) gauge theory with F flavors, b = 3N − F. We also write
the 1-loop holomorphic coupling as

τa
1−loop(µ) = − 1

8π2 ln

[(
|Λ|
µ

)b
eiΘa

]
. (B.4.12)

The holomorphic intrinsic scale is defined as Λ = |Λ|eiΘa/b. Since Θ-angle does not affect
the perturbation theory, there is a translation symmetry of this as:

Θa → Θa + αa (for αa ∈ R). (B.4.13)

On the other hands, the quantum corrections by the gauge coupling ga must have the form
in terms of the holomorphic coupling as:

g2
a =

2
τ + τ† . (B.4.14)

Therefore, since the superpotential must be a holomorphic function of τa, the quantum cor-
rections which are proportional to a power of g2

a are not allowed in terms of the holomorphic
gauge coupling. As a result, the non-renormalization theorem for the holomorphic gauge
coupling states that the holomorphic gauge coupling is only allowed to have a shifting de-
gree of freedom in perturbative theories.

If we take into account the non-perturbative effects, the action has no continuous Θ-angle
translation. However, a discrete rotation is only allowed since this term is proportional to an
integer n called the winding number as mentioned above. So, the action is invariant under
the Θa-angle translation as

Θa → Θa + 2π. (B.4.15)

In terms of the holomorphic intrinsic scale, we find the action is invariant under the trans-
formation defined as

Λ → Λ′ = e2πi/bΛ. (B.4.16)
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B.4 Non-renormalization theorem

This means that the non-perturbative contributions are proportional to Λbn for invariant
under the discrete rotation. In general, we obtain the exact holomorphic gauge coupling;

τa(µ) = − 1
8π2 ln

(
Λ
µ

)b
+

∞

∑
n=1

an

(
Λ
µ

)bn
. (B.4.17)

where an are the coefficients of the instanton effects. The first term explains that the holo-
morphic gauge coupling is exhausted at 1-loop level, and the second term describes the
non-perturbative effects on the holomorphic coupling (which are called the n-instanton ef-
fects).

However, we know the beta functions for the gauge couplings by direct calculations
beyond 1-loop corrections (for example, the explicit expression is given by [94]). This con-
fusion was solved by V.A. Novikov, M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. Thus,
this beta-function is called the NSVZ β function [95]. N. Arkani-Hamed and H. Murayama
revealed that the physical gauge coupling is affected by the rescaling anomaly of the vector
supermultiplet and the matter multiplet though the holomorphic coupling is exhausted at
1-loop level [96].
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C Supersymmetry Breaking
In this appendix, we explain the details of the anomaly mediated SUSY breaking (AMSB)
mechanism. These arguments are based on [60, 97, 98].

C.1 Coupling superfields
The soft SUSY breaking parameters are obtained by treating the renormalized coupling con-
stants as superfields [50, 51, 52]. Now let us consider the simple case, the Wess-Zumino
model:

L =
∫

d4θZΦ†Φ +
∫

d2θ

(
1
2

MΦ2 +
1
6

λΦ3
)
+ h.c. (C.1.1)

The soft SUSY breaking are obtained from the VEVs of the θ-dependent (but x-independent)
components of Z, M, and λ which are extended to the superfields. Z is the real superfield,
and M and λ are the chiral superfields. We treat the bare couplings as the superfields in-
cluding quantum level by regularize the theory with keeping SUSY preserving. If these
superfields have the θ-dependent non-zero VEV, we obtain the soft SUSY breaking terms. If
we consider the renormalized coupling, the scalar component of Z is unity.

Z → 1 + (Bθ2 + h.c.) + Cθ2θ†2

M → M + FMθ2

λ → λ + Fλθ2

(C.1.2)

then, we divide the Lagrangian into supersymmetric one and soft terms as follows:

L = LSUSY + Lsoft

Lsoft = −(|B|2 − C)φ†φ −
[

1
2
(2BM − FM) φ2 +

1
6
(3Bλ − Fλ) φ2 + h.c.

]
.

(C.1.3)

These soft parameters are denoted as:

m2 = |B|2 − C = −[ln Z]θ2θ†2

AM = −(2BM − FM) = −[M̂]θ2

Aλ = −(3Bλ − Fλ) = −[λ̂]θ2 .

(C.1.4)

In the last equalities, we defined the renormalized (physical) couplings as

λ̂ ≡ λ

ζ3/2 , M̂ ≡ M
ζ

(C.1.5)
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C.2 Anomaly Mediated Supersymmetry Breaking

where ζ is the chiral superfield component of Z. Actually, the coupling Z absorbs the diver-
gence as the wave function renormalization of Φ and Φ†, Z must be divided into the chiral
superfield and anti-chiral superfield.

Z = (ζζ†)1/2 + (C − |B2|)θ2θ†2,

ζ = 1 + 2Bθ2.
(C.1.6)

C.2 Anomaly Mediated Supersymmetry Breaking
We consider the case that there is no gauge singlet field in the hidden sector. We assume that
the dynamical SUSY breaking in the hidden sector is given rise to at the energy scale µSUSY.
The scalar potential of the supergravity (SUGRA) is obtained as:

V =

∣∣∣∣
∂W
∂z

∣∣∣∣
2
− 3

M2
Pl
|W|2 + D-terms + . . . (C.2.1)

where z is the superfield which has SUSY breaking F-term. In this potential, we do not
include the multiplets which have the VEVs at Planck scale. The leading contribution of the
Kähler potential is given by

K = Z†Z +O
(

Z3

MPl

)
. (C.2.2)

There is no linear term in Kähler potential since there is no gauge singlet field.
If a gauge singlet field exists in the SUSY breaking sector, the gaugino masses are gener-

ated by the higher-dimensional operator as:
∫

d2θ
Z

MPl
trWαWα + (h.c.). (C.2.3)

Thus, the typical mass scale of the gauginos is µ2
SUSY/MPl. On the other hand, in the case that

no the gauge singlet field exists in the hidden sector, the typical mass scale of the gauginos,
which are generated from the more higher-dimensional operators, are less than µ3

SUSY/M2
Pl.

However, since the mass scale of the sfermions is proportional to µ2
SUSY/MPl, the SUSY

breaking scale is assumed to be µSUSY ∼ 1010GeV for the several TeV superpartners. The
gauginos has the mass of several keV in the theory which has no gauge singlet field in the
hidden sector.

It implies that there is a serious problem in the model of the dynamical SUSY breaking
in the hidden sector.

Now, we will see that the mass of gauginos and the A-terms are generated with an or-
der of O(1/MPl). The effective theory in the visible sector is obtained by integrating out
the massive particles in the hidden sector with regularizing appropriately the theory. The
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C.2 Anomaly Mediated Supersymmetry Breaking

Table 9: The Weyl weight for each operators

superfields Weyl weight R-charge

Q matter (chiral) +1 rQ

Q† matter (anti-chiral) +1 −rQ

V gauge (vector) 0 0

W a field strength chiral superfield +3/2 +1

Dα chiral covariant derivative +1/2 -1

D†
α̇ anti-chiral covariant derivative +1/2 1

" d’Alembertian 2 0

φ compensator (chiral) +1 +2/3

φ† compensator (anti-chiral) +1 -2/3

contributions from the massive SUGRA particles are negligible until we consider the higher
corrections an order of O(M−2

Pl ), since the effects from exchanging the SUGRA particles are
generated with O(M−2

Pl ).
By using the superconformal calculus formulation of SUGRA, we obtain the gaugino

mass and A-terms. First, we construct the action which is invariant under the local super-
conformal transformation. Then, this superconformal symmetry is explicitly broken down
to local super-Poincaré symmetry. All of the fields are assigned a Weyl weight, which is
a scaling dimension and is equal to the mass dimension of superfields, the conformal in-
variance is broken by the scalar component of the compensator chiral superfields φ. This
compensator has Weyl weight +1. The Weyl weight and the R-charge for every field are
shown in Table 9. The Weyl weight and R-charge of Lagrangian are

d(L) = 4, R(L) = 0, (C.2.4)

where d(Φ) denotes the Weyl weight of the superfield Φ and R(Φ) means the R-charge of
Φ. Since Lagrangian is composed of the Kähler potential (K) and the superpotential (W)

L =
∫

d4θ K+

(∫
d2θ W + h.c.

)
, (C.2.5)
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these charges are assigned as follows:

d(K) = 2, R(K) = 0
d(W) = 3, R(W) = 2.

(C.2.6)

For constructing the superconformal action, it is convenient that we set the Weyl weight and
R-charge of every field to be 0. That is, all of superfields are combined with the compensator
appropriately. Then, the compensator must couple to the Kähler potential and the super-
potential since the action is not conformally invariant. The R-charge of the compensator is
defined in order to give the proper R-charge for the superpotential. That is,

∫
d2θ φ3 + h.c. (C.2.7)

is R-invariant.
The Weyl invariant action has the form as:

S =
∫

d4x L

L =
∫

d4θ φφ†K
(

Q
φ

,
Q†

φ† ,
W a

φ3/2 ,
W†

α̇

φ†3/2 , V;
φ1/2

φ† Dα,
φ†1/2

φ
D†α̇

)

+

(∫
d2θ φ3W

(
Q
φ

,
W a

φ3/2

)
+ h.c.

)
.

(C.2.8)

This action is rewritten in terms of the Kähler potentials Ω with the Weyl weight dim Ω and
the superpotentials Ξ with the Weyl weight dim Ξ

S =
∫

d4x

[∫
d4θ φφ† ∑

Ω
(φφ†)−dim Ω/2Ω +

(∫
d2θ φ3 ∑

Ξ
φ−dim ΞΞ + h.c.

)]
. (C.2.9)

When we calculate the gaugino mass and the A-terms, we use the dimensional reduction
(DRED) as the regularization method. Thus, we consider the Weyl invariant action in D-
dimensional Minkowski spacetime. We have

S =
∫

dDx

[∫
d4θ (φφ†)

D−2
2 ∑

Ω
(φφ†)−dim Ω/2Ω +

(∫
d2θ φD−1 ∑

Ξ
φ−dim ΞΞ + h.c.

)]
.

(C.2.10)

The scalar VEVs of the compensator breaks the superconformal symmetry into the super-
Poincaré symmetry. On the other hand, the VEVs of higher component of the compensator
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C.2 Anomaly Mediated Supersymmetry Breaking

breaks supersymmetry. When the supersymmetry is broken, the compensator has the form
as∗:

φ = 1 + m3/2θ2 (C.2.11)

Then, we have

S =
∫

dDx

[∫
d4θ ∑

Ω

(
1 +

1
2
(D − 2 − dim Ω)m3/2(θ

2 + θ
†2
)

)
Ω

+

(∫
d2θ ∑

Ξ

(
1 + (D − 1 − dim Ξ)m3/2θ2

)
Ξ + h.c.

)
+O(m2

3/2)

]
.

(C.2.12)

The Weyl weight for the fundamental superfields in D dimension is defined as equivalent to
the mass dimension for these fields. For example, the Weyl weight for the vector superfields
is zero, and then, in the gauge sector, we have

Ξ =
1

4g2
0

trWαWα : dim Ξ = 3 (C.2.13)

where g0 is the bare gauge coupling. At tree level, we obtain

Lgauge =
∫

d2θ
(

1 − ϵm3/2θ2
) 1

4g2
0

trWαWα. (C.2.14)

This expression means that the bare gaugino mass is proportional to −ϵm3/2. Combining
this bare mass with 1/ϵ terms in the bare gauge coupling, we have

Lgauge =
∫

d2θ
1

4g2(µ)

(
1 − ϵm3/2 ·

β(g2)
ϵg2 θ2

)
trWαWα (C.2.15)

then, the mass of the gaugino is as:

Mλ(µ) = −β(g2)
2g2 m3/2. (C.2.16)

In this mechanism, we are also able to obtain the A-terms and the sfermion mass. First,
we consider the dimension-n superpotential given as:

Ξ = λΦ1 · · · Φn. (C.2.17)

∗It is known that the F-component of the compensator chiral superfield is equivalent to the gravitino mass
at the leading order by using the equation of motion of the auxiliary field [97].
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C.2 Anomaly Mediated Supersymmetry Breaking

The corresponding soft SUSY breaking term (An-terms) in the SUGRA background is given
by Eq. (C.2.12) as (n − 3)m3/2λφ1 · · · φn at tree-level. That is, the A-terms are not induced at
tree-level, and the other soft masses are the same order as the gravitino mass.

Then, we incorporate the quantum corrections from the kinetic terms of these fields in
the 1PI effective action.

∑
r

∫
d4θΦ†

r Zr

[
("/φφ†)

]
Φr +O(m2

3/2)

= ∑
r

∫
d4θΦ†

r Zr

[
"(1 − (m3/2θ2 + h.c.))

]
Φr +O(m2

3/2)
(C.2.18)

The renormalized An-terms receive the quantum corrections from Zr(" = µ2).

An =

(
n − 3 − 1

2

n

∑
r=1

γr(µ)

)
m3/2λ, γr(µ) ≡

d ln Zr
d ln µ

. (C.2.19)

Thus, the scalar trilinear coupling are induced with the 1-loop suppression:

A3(µ) = −1
2

3

∑
r=1

γr(µ)m3/2λ(µ). (C.2.20)

When this renormalized operator relates to the bare operators as:

λ0Φ0
1Φ0

3Φ0
3 = λ(µ)Φ1Φ3Φ3

= λ(µ)Z−1/2
1 Z−1/2

2 Z−1/2
3 Φ0

1Φ0
3Φ0

3
(C.2.21)

and then, we have

d ln λ(µ)
d ln µ

=
1
2 ∑

r

d ln Zr
d ln µ

= −1
2 ∑

r
γr(µ).

(C.2.22)

Thus, the A-terms are obtained as:

A3(µ) = m3/2
dλ(µ)
d ln µ

= β(λ)m3/2. (C.2.23)

The A-terms are also induced with loop suppression.
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The scalar soft mass terms are also induced from the wave function renormalization. As
mentioned above, the relation between the scalar soft mass and Zr(" = µ2) is given∗:

m2
r = −[ln Zr]θ2θ†2

= −1
4

m2
3/2

d
d ln µ

(
dZr

d ln µ

)
.

(C.2.25)

Then, by using the anomalous dimensions and the beta functions, we have:

m2
r =

1
4

m2
3/2

[
β(ga)

∂

∂ga
+ β(yijk)

∂

∂yijk + · · ·
]

γr (C.2.26)

where ga and yijk are the gauge couplings and the Yukawa couplings, respectively. In the
AMSB, the superpartner spectrum is proportional to m3/2 with the 1-loop suppression. Also,
these expression shows that there is a phenomenologically important result. We can neglect
the Yukawa couplings since they for the light SM model particles are too small. The anoma-
lous dimension at the 1-loop level is

γr =
1

16π2

(
1
2

yrsty∗rst − ∑
a
(2g2

aCa)

)
(no sum for r)

≈ − 1
2π ∑

a
αaCa

(C.2.27)

where Ca is the Casimir invariant defined as Caδi
j ≡ ∑A(TATA)i

j, especially Ca = (N2 −
1)/2N for SU(N). Thus, we have the form for the soft mass:

m2
r = −∑

a

Caαa
4πga

β(ga)m2
3/2. (C.2.28)

For the asymptotically free gauge symmetry, these soft masses are positive values since
β(g) < 0. Unfortunately, however, the standard model includes the gauge groups which
become strong at high-energy scale, SU(2)L and U(1)Y, the sleptons are tachyonic scalar
particles. If these particle are tachyonic, our Universe changes into the charge breaking vac-
uum.

∗ We use the general formula:

F(a + bθ2 + cθ†2) = F(a) + (bθ2 + cθ†2)F′(a) + bcθ2θ†2F′′(a) (C.2.24)

where a, b, and c are independent from θ and θ† coordinates, and the prime denotes the differential of F(a)
with respect to a.
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D The Effective Gauge Theory Approach to GUT
In this appendix, we review how to construct the effective gauge theory following [99, 100].
The unified gauge group G breaks into Standard Model (SM) gauge group at very high
energy (a typical scale MGUT ∼ 1016GeV).

G → SU(3)C × SU(2)L × U(1)Y

MGUT is estimated by the development of the β functions of these gauge couplings. That is
why the massive particles are decoupled, and do not affect the effective theory at low-energy
scale (this fact is ensured by the so-called Appelquist-Carrazzone theorem) [101]. Since we
use MS scheme (in SUSY case, we use the DR scheme [74] which is the supersymmetric
invariant scheme), β functions are mass-independent. In order to use perturbation at low-
energy, we construct the effective gauge theory (EGT) by integrating out heavy particles.
When we integrate out these heavy particles, we should consider "boundary conditions"
known as “threshold corrections”. These are the conditions for coupling constants to match
the couplings between the full theory above the energy where the massive particles are
integrated out and the effective theory after these particles are integrated out.

In our analysis, there are four or more scales where massive particles are integrated out.

1. GUT scale (MGUT) : G → SU(3)C × SU(2)L × U(1)Y
In grand unified theories, many fields obtain the mass terms after the adjoint Higgs
acquired VEVs. For example, the X-boson, the adjoint Higgs bosons, and the color-
triplet Higgs boson have the heavy masses in SU(5) GUT.

2. SUSY scale (MSUSY) and other mass scales of massive particles
If supersymmetry is softly broken, many soft mass terms are introduced. Below this
mass scale, the effective theory includes the standard model particles and remnants
which are not integrated out at the SUSY breaking scale. For instance, in the high-scale
SUSY scenario, there is a large mass difference between scalar fermions and gauginos.

3. Weak scale (MW)
We integrate out W-, Z-bosons, ghosts, and the Higgs boson which are massive after
the Higgs boson has non-zero VEV. Below this scale, we construct effective quantum
chromodynamics (QCD), and quantum electrodynamics (QED) including only quarks,
leptons and electromagnetic gauge boson, namely photon.

4. Massive fermion mass scales
In effective QCD and QED, all of charged fermions obtain masses. Then, under these
mass scales, these heavy fermions do not appear in external lines and are integrated
out. Therefore, the number of flavors of quarks is decreased as the energy scale be-
comes lower.
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D.1 How to construct threshold correction for gauge couplings

D.1 How to construct threshold correction for gauge couplings
The threshold correction is the boundary condition between gauge coupling constants of
the full theory and the effective theory (for example GUT and SM). Now, we consider the
case that the simple gauge group G is spontaneously broken down to ∏i Gi ×U(1). Namely
the full theory corresponds to the gauge theory based on unified gauge group G and the
effective theory corresponds to the gauge theories based on ∏i Gi × U(1) which include
non-renormalizable interactions. The relation between the indices of these generators is
described as:

{α} = {A}+ ∑
i
{ai} (D.1.1)

where α, A, and ai mean the generators of G , broken symmetry and unbroken residual
symmetry Gi, respectively.

We choose Rξ gauge when we construct the effective Lagrangian since this gauge make
us to introduce invariant terms under Gi gauge transformation and to vanish interaction
terms such as the two-point interactions between different fields.

The Lagrangian of the full theory which is invariant under G gauge transformation is
given by

L = −1
4

Fµν
α Fαµν + ψi(iD̸ − MF)ψi +

1
2
|Dµφi|2 − V(φ) + LY + LGF + LFP. (D.1.2)

We decompose this gauge kinetic term to local gauge Gi invariant part and massive gauge
boson part.

−1
4

Fµν
α Fαµν =− 1

4

[
∂µ Aν

α − ∂ν Aµ
α − gCαβγ Aµ

β Aν
γ

] [
∂µ Aαν − ∂ν Aαµ − gCαβγ Aβµ Aγν

]

=− 1
4

[
F̃µν

A − g ∑
l

(
CABcl A

µ
B Aν

cl
+ CAblC Aµ

bl
Aν

C

)]2

− 1
4 ∑

l

[
F̃µν

al − gCal BC Aµ
B Aν

C
]2 .

(D.1.3)

Here, F̃ denotes

F̃µν
A = ∂µ Aν

A − ∂ν Aµ
A − gCABC Aµ

B Aν
C,

F̃µν
al = ∂µ Aν

al
− ∂ν Aµ

al − gCalblcl A
µ
bl

Aν
cl

.
(D.1.4)

where A, B, . . . are the indices of the generators of the broken symmetry and al, bl . . . are
those of the generators of the residual Gl symmetries. Note that there is no term which has
coefficients CAblcl since the generators of the unbroken symmetry have the closed structure
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D.1 How to construct threshold correction for gauge couplings

of algebras. Therefore, anti-commutators of generators of residual symmetries which are
given by {

Tbl , Tcl
}
= iCblcl al T

al (D.1.5)

are only permitted. In other words, iCblcl A are exactly zero since TA are not included in
algebras of the generators of residual symmetries.

Now we consider gauge transformations of broken gauge symmetries. The infinitesimal
gauge transformation for the massive gauge boson AAµ and scalar fields φi are given by

AAµ → AAµ −
1
g

∂µαA

φj → (1 + iαAtA
s )jiφi.

(D.1.6)

The kinetic term of scalar field is obtained as follows:

|Dµφ|2 = ∂µφ′
i∂µφ′

i − igAαµ
[
(λj + φ′

j)(t
α
s )ji∂µφ′

i − ∂µφ′
j(t

α
s )ji(λi + φ′

i)
]

+ g2Aαµ Aα
µ(λj + φ′

j)(t
α
s tα

s )ji(λi + φ′
i)

(D.1.7)

where λi is the VEV of the scalar field φi and φ′
i is the quantum fluctuation around the VEV,

φ = λ + φ′. Since two-point interactions between the scalar boson and the massive gauge
boson are generated from the second term, we must avoid these terms by using Rξ gauge.
A gauge fixing function and a gauge fixing term are given by:

fAx =
1√
ξ
(Da

µ Aµ
A + igξλi(tA

s )ijφ
′
j),

LGF = −1
2

f 2
Ax.

(D.1.8)

Since this gauge fixing term is also invariant under residual gauge symmetries, the deriva-
tive term in fAx must transform covariantly under the residual gauge symmetry, Da

µ Aµ
A. The

gauge transformation of gauge fixing function is obtained as:

fAx → 1√
ξ

[
∂µ
(

AAµ −
1
g

∂µαA

)

+gCABa

(
Aµ

B − 1
g

∂µαB

)
Aaµ + igξλi(tA

s )ij

[
(1 + iαAtA

s )jkφk − λj

]]
.

(D.1.9)

The last term is obtained from the transformation rule of φ but not φ′. Thus, we obtain the
functional derivative of this gauge fixing function with respect to the gauge parameter αB as

δ fAx
δαB

=
1√
ξ

[
−δAB

g
∂µ∂µ + CABa[∂

µ Aaµ + Aaµ∂µ]− gξδABλi(tA
s tA

s )ijφj

]
, (D.1.10)
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and the Fadeev-Popov ghost Lagrangian as

det
(

δ fAx
δαB

)
=
∫

DcDc exp
[

i
∫

d4xcA

(
−δAB∂2 + gCABa[∂

µ Aaµ + Aaµ∂µ]

−δABg2ξλi[(tA
s )

2]ij(λj + φ′
j)
)

cB

] (D.1.11)

This Lagrangian implies that this ghost field has mass, m2
A = g2ξλi[(tA

s )
2]ijλj, which is the

same mass as the mass of the heavy gauge bosons. The effective Lagrangian which is mani-
festly invariant under residual gauge symmetries Gi is written as

L̃i = −1
4

F̃µν
al F̃alµν +

1
4

li F̃
µν
al F̃alµν + · · · (D.1.12)

where the second term of this Lagrangian is obtained by integrating out heavy particles.
Because of gauge Gi invariance, these effects must be proportional to the residual gauge
kinetic term.

p, µ p, ν

p, µ p, ν
Figure 15: (Left) This diagram generate both of the external momentum dependent and
independent amplitude. (Right) This diagram generate only the external momentum inde-
pendent amplitude.

D.2 Feynman rule of the Effective Gauge Theory
When we construct effective gauge theories by integrating out massive gauge bosons, we
need Feynman rules of the effective gauge theories. Therefore, let us decompose unified
gauge invariant terms into residual gauge invariant terms and interaction terms of massive
gauge bosons, ghosts, and residual gauge bosons. Gauge interaction terms with massive
gauge bosons are obtained from the GUT invariant gauge kinetic term −FµνFµν/4.

g
2

F̃Aµν ∑
l

(
CABcl A

µ
B Aν

cl
+ CAblC Aµ

bl
Aν

C

)
− 1

4
g2

[

∑
l

(
CABcl A

µ
B Aν

cl
+ CAblC Aµ

bl
Aν

C

)]2

+
1
2

g ∑
i

F̃µν
ai CaiBC ABµ ACν

(D.2.1)
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D.2 Feynman rule of the Effective Gauge Theory

Gauge three-point interaction terms are decomposed as follows:

g(∂µ AAν − ∂ν AAµ)∑
l

CABcl A
µ
B Aν

cl
+

1
2

g ∑
i
(∂µ Aaiν − ∂ν Aaiµ)CaiBC Aµ

B Aν
C

= g ∑
i

CABci

(
∂µ AAν Aµ

B Aν
ci
+ ∂ν ABµ Aµ

A Aν
ci
+ ∂µ Aciν Aµ

A Aν
B
) (D.2.2)

where we use the property of the structure constant CABci , which is antisymmetric under
changing indices as B ↔ C. There is the other contribution from the gauge fixing term. This
contribution has the following form:

−g
ξ

CABcl ∂
µ AAµ Aν

B Aclν. (D.2.3)

Therefore, the three-point interactions including massive gauge bosons and massless gauge
bosons are obtained as follows:

LABi = ∑
i

[
gCABcl

(
∂µ AAν Aµ

B Aν
ci
+ ∂ν ABµ Aµ

A Aν
ci
+ ∂µ Aciν Aµ

A Aν
B
)
− g

ξ
CABci ∂

µ AAµ Aν
B Aciν

]
.

(D.2.4)
Then, we consider the three-point vertex which includes ghosts and massless gaugebosons.
This interaction term is given by

Lc̄cA = gCABacA∂µ AaµcB. (D.2.5)

Here, since all fields go into the vertex, anti-ghost has momentum with opposite sign to
arrow of this external line.

Next, we consider the interaction term of massive scalar and massless gauge boson. This
corresponding Lagrangian is given by

LφφA = −iAaµ
[
φ′

j(t
a
s)ji∂µφ′

i − ∂µφ′
j(t

a
s)jiφ

′
i

]
. (D.2.6)

Note that “heavy scalar” means either the Nambu-Goldstone boson or the physical heavy
scalar boson. We also obtain the Lagrangian for interaction of massive fermions and mass-
less gauge boson as the following form.

LψψA = −igψmγµiAaµ(ta
F)mnψn (D.2.7)

Therefore, the Feynman rules which describe the interaction between residual massless
gauge boson and massive gauge bosons, scalars and fermions are obtained as follows:

kA

kB

kci

ρ, A

µ, B

ν, ci= gCABci

[
(kA − kci +

1
ξ

kB)µgρν + (kci − kB − 1
ξ

kA)ρgµν + (kB − kA)νgρµ

]

(D.2.8)
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kcA

−kcA

ka

cB

cA

µ, a
= −i

(
−igCABakµ

a
)
= gCABa(kc − kc)

µ (D.2.9)

p

q

k
µ, a

= −i(−ig)(−ip + iq)µ(ta
s)ji = ig(p − q)µ(ta

s)ji (D.2.10)

p

q k
µ, a

= −igγµ(ta
F)mn (D.2.11)

D.3 One-loop calculation for threshold correction
In this subsection, we show details for the calculation of threshold corrections for gauge
couplings. As mentioned above, the effects of integrating out the massive particles are in-
cluded as threshold corrections. To calculate these effects of heavy particles, it is needed to
match amplitudes which are calculated in full theory and effective theory. For instance, all
we have to obtain threshold corrections of gauge couplings is to calculate two-point func-
tion of gauge fields thanks to gauge symmetry (that is, Ward-Takahashi identity). Now, let

k

q B

q + k A

k
µ, a′i ν, ai

Figure 16: heavy gauge loop

us calculate heavy gauge 1-loop correction. In Fig. D.3, the doubly-waving lines explain the
massive gauge bosons, and waving lines describe massless gauge boson. Fig. D.3 gives the
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D.3 One-loop calculation for threshold correction

contribution to the two-point gauge vertex as:

− 1
2

g2CBAa′i
CBAai

∫ ddq
(2π)d

1
(q + k)2 − M2

VA

1
q2 − M2

VB

× gησgξρ {2kρgµσ − 2kσgµρ + (2q + k)µgρσ
} {

−2kξ gνη + 2kηgνξ − (2q + k)νgξη
}

.
(D.3.1)

where 1/2 is a symmetry factor. By using the Feynman parameter, we find that this integral
will change as the following form:

g2CBAa′i
CBAai

∫ 1

0
dx
∫ ddq

(2π)d
1

[(q + xk)2 − ∆2]2

{
8(k2gµν − kµkν) + d′(2q + k)µ(2q + k)ν

}
.

(D.3.2)

Here, d′ means

d′ =

{
4 (DR scheme)
4 − ϵ (MS scheme)

(D.3.3)

We also define ∆2 ≡ x(x − 1)k2 + xM2
VB

+ (1 − x)M2
VA

= x(x − 1)k2 + M2
VA

. The second
equality is justified since the 1-loop amplitude is symmetric under exchange A with B. We
set loop momentum to be Pµ = qµ + xkµ. By using loop integral formulae, we find this
integral to be

ig2

(4π)d/2 CBAa′i
CBAai Γ(2 − d/2)

×
∫ 1

0
dx∆d−4

{
4d

d − 2
gµν[x(x − 1)k2 + M2

VA
] + 8(k2gµν − kµkν) + d′(1 − 2x)2kµkν

}
.

(D.3.4)

Since we have set d = 4 − ϵ, the gauge coupling constant has a mass dimension [mass] =
ϵ/2. ,we introduce parameter µ which has mass dimension, g = µϵ/2 g̃

i
(4π)2 g̃2CBAa′i

CBAai

∫ 1

0
dx
(

2
ϵ
+ ln 4π − γ

)(
fµν(k, x) + 8gµνM2

VA

)

+
i

(4π)2 g̃2CBAa′i
CBAai

∫ 1

0
dx ln

µ2

∆2

(
fµν(k, x) + 8gµνM2

VA

)

+ 2
i

(4π)2 g̃2CBAa′i
CBAai

∫ 1

0
dx
[
2[x(x − 1)k2 + M2

VA
]gµν − (1 − 2x)2kµkν

]

(D.3.5)

where fµν(x, k) is the function has the form

fµν(x, k) = 8gµνx(x − 1)k2 + 8(k2gµν − kµkν) + 4(1 − 2x)2kµkν. (D.3.6)
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k

q + k B

q A

k
µ, a′i ν, ai

Figure 17: Massive ghost loop

And, integral of this function fµν is as below;

∫ 1

0
dx fµν(x, k) =

20
3
(k2gµν − kµkν). (D.3.7)

And expanding the term ln ∆2 as below;

ln ∆2 = ln M2
VA

+ ln

(
1 +

x(x − 1)k2

M2
VA

)
∼ ln M2

VA
+

x(x − 1)k2

M2
VA

(D.3.8)

Since this diagram has the gauge (Gi) invariance, the gauge variant term will vanish with
the gauge-gauge-massive gauge-massive gauge interaction.

= i(k2gµν − kµkν)g̃2CBAa′i
CBAai

1
48π2 · 20

[
1
ϵ
+

1
2

ln 4π − 1
2

γ + ln
µ

MVA

]

+ ig̃2CBAa′i
CBAai

1
48π2

(
k2gµν − kµkν

)
+O(k4, ϵ, M2

VA
)

(D.3.9)

Similarly if we set d′ = 4, we will find the contribution from the integral of Eq. (D.3.4) as
follows:

i(k2gµν − kµkν)g̃2CBAa′i
CBAai

1
48π2 · 20

[
1
ϵ
+

1
2

ln 4π − 1
2

γ + ln
µ

MVA

]
+O(k4, ϵ, M2

VA
).

(D.3.10)

Next, we consider the contribution from the massive ghost loop. The internal momentum
and the generator indices are assigned as Fig. 17.

−g2CBAa′i
CBAai

∫ ddq
(2π)d (−k − 2q)µ

i
(q + k)2 − M2

VA

i
q2 − M2

VB

(2q + k)ν (D.3.11)
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D.3 One-loop calculation for threshold correction

where (-1) is multiplied because of the ghost loop. Then, we carry out this integral we find
this value will be as:

−g2CBAa′i
CBAai

∫ 1

0
dx

i∆d−4

(4π)d/2

[
gµν 4d/d′

d − 2
(k2x(x − 1) + M2

VA
) + (1 − 2x)2kµkν

]
Γ(2 − d/2)

(D.3.12)

In the MS scheme, we set d = d′ = 4 − ϵ and g2 = µϵ g̃2,

− ig̃2

(4π)2 CBAa′i
CBAai

∫ 1

0
dx
{

2
ϵ

[
2gµν(k2x(x − 1) + M2

VA
) + (1 − 2x)2kµkν

]

+

(
ln

4π

∆2 − γ + ln µ2
) [

2gµν(k2x(x − 1) + M2
VA
) + (1 − 2x)2kµkν

]
+ 2gµν(k2x(x − 1) + M2

VA
)

}

(D.3.13)

Note that the terms which are not gauge invariant cancel out with the amplitude generated
from the four-point interaction as in the right figure of . Since we need the leading term of
k, we expand the logarithm “ln ∆2" as before. Finally, this contribution from the ghost loop
is obtained as the following form in the MS scheme:

2ig̃2

48π2 CBAa′i
CBAai

(
k2gµν − kµkν

)(1
ϵ
+

1
2

ln 4π − 1
2

γ + ln
µ

MVA

)
+O(k4, ϵ, M2

VA
) (D.3.14)

In the DR scheme, we set d = 4 − ϵ, d′ = 4, and g2 = µϵ g̃2. We obtain the contribution from
the ghost loop in the DR scheme by means of the same procedure as before:

2ig̃2

48π2 CBAa′i
CBAai

(
k2gµν − kµkν

)(1
ϵ
+

1
2

ln 4π − 1
2

γ + ln
µ

MVA

)
+O(k4, ϵ, M2

VA
) (D.3.15)

k

q + k

q

k
µ, a′i ν, ai

Figure 18: scalar loop

We also obtain the scalar amplitude with the similar procedure which we used for the
ghost one. So, the contribution from Fig. 18 is obtained as:

= − ig̃2

48π2 (tS)ij(tS)ij

(
k2gµν − kµkν

)(1
ϵ
+

1
2

ln 4π − 1
2

γ + ln
µ

MVA

)
+O(k4, ϵ, M2

VA
)

(D.3.16)
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D.3 One-loop calculation for threshold correction

In particular, in case of Nambu-Goldstone (NG) boson, we replace the generator with that
of adjoint representation

Ca′AB = [ta′
S ]AB. (D.3.17)

Then, we also obtain the contribution from NG boson is obtained as:

= − ig̃2

48π2 Ca′i ABCai AB

(
k2gµν − kµkν

)(1
ϵ
+

1
2

ln 4π − 1
2

γ + ln
µ

MVA

)
+O(k4, ϵ, M2

VA
)

(D.3.18)

Combining the informations above, we obtain the two-point correlation function which
includes the contributions of the massive gauge boson, the massive ghost, the massive NG
boson, the massive Dirac fermion and massive real scalar. What we need to do is to treat
only external momentum dependent terms since the momentum independent contributions
are cancelled with the amplitude generated from the four-point interaction of massive gauge
bosons and massless gauge bosons.

In the MS scheme, this contribution is obtained as follows:

−lMS ≡ ig̃2

48π2

{
1
ϵ′

[
20TrTVA TVA + 2TrTVghost TVghost − TrTVNG TVNG

]
+ TrTVA TVA

+

[
20TrTVA TVA ln

µ

MVA

+ 2TrTVghost TVghost ln
µ

Mghost
− TrTVNG TVNG ln

µ

MNG

]}

(D.3.19)

where we set

1
ϵ′

≡ 1
ϵ
− 1

2
γ + ln

√
4π. (D.3.20)

In the DR scheme, this contribution is also obtained as follows:

−lDR ≡ ig̃2

48π2

{
1
ϵ′

[
20TrTVA TVA + 2TrTVghost TVghost − TrTVNG TVNG

]

+

[
20TrTVA TVA ln

µ

MVA

+ 2TrTVghost TVghost ln
µ

Mghost
− TrTVNG TVNG ln

µ

MNG

]}

(D.3.21)

Note that the difference between the DR scheme and the MS scheme is whether the constant
term which is proportional to TrTVA TVA exist or not. In the effective theory after integrat-
ing out the massive particles, it is needed to match an amplitude with one in full theory.
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Therefore, the effective kinetic terms for gauge fields must be formed as the following form:

−∑
i

1
4
(1 − li)F̃µν

ai F̃aiµν. (D.3.22)

In order to obtain canonical kinetic terms, we have to redefine the gauge fields and gauge
couplings in effective theory as:

A′
aiµ

≡
√

1 − li Aaiµ

gi ≡ g/
√

1 − li
(D.3.23)

where Aaiµ and g are gauge fields and gauge coupling in full theory, respectively. We obtain
the relation between bare couplings in full theory and effective theory. We also find easily
the renormalized couplings in each theories.

gµϵ/2 = g(µ)− bGg3(µ)/ϵ′ + . . .

giµ
ϵ/2 = gi(µ)− big3

i (µ)/ϵ′ + . . .
(D.3.24)

To understand the relation between the renormalized couplings at 1-loop level, Eq. (D.3.21)
and Eq. (D.3.19) are divided into the finite part λi and the divergent part λ′

i

li = g2
i (λi(µ) + λ′

i(µ)/ϵ′). (D.3.25)

By using Eq. (D.3.24), we obtain this relation as:

α−1
i (µ) = α−1(µ)− 4πλi(µ) (D.3.26)

where αi(µ) = g2
i (µ)/4π, α(µ) = g2(µ)/4π. Thus, the threshold correction in the MS scheme

is

λMS
i (µ) =

1
48π2

[
−Tr

(
t2
iV

)
− 21Tr

(
t2
iV ln

MV
µ

)
+ 8Tr

(
t2
iF ln

MF
µ

)
+ Tr

(
t2
iS ln

MS
µ

)]
.

(D.3.27)

What is more, the threshold correction in the DR scheme is

λDR
i (µ) =

1
48π2

[
−21Tr

(
t2
iV ln

MV
µ

)
+ 8Tr

(
t2
iF ln

MF
µ

)
+ Tr

(
t2
iS ln

MS
µ

)]
. (D.3.28)

We also obtain the relation between the gauge couplings in the MS scheme and the
DR scheme. This relation is able to be defined as the following form since the difference
between the MS and the DR gauge couplings is only the constant terms.

1
αDR

i (µ)
=

1
αMS

i (µ)
− Ci

12π
. (D.3.29)
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Similarly, for the unified gauge couplings, the relation is defined as

1
αDR

G (µ)
=

1
αMS

G (µ)
− CG

12π
. (D.3.30)

Since the gauge fields belong to adjoint representation of gauge group, the threshold correc-
tions in each scheme are related by

λDR
G = λMS

G − 1
48π2 Trt2

GV , λDR
i = λMS

i − 1
48π2 Trt2

GiV . (D.3.31)

First equation means CG = Trt2
GV . For instance, if the unified gauge group is SU(N), CG =

N. The relation between residual gauge couplings and the unified coupling is obtained
above,

1
αDR

i (µ)
=

1
αDR

G (µ)
− 4πλDR

i (µ). (D.3.32)

The relation of gauge couplings in MS scheme is also obtained by using Eq. (D.3.29), Eq. (D.3.30)
and Eq. (D.3.31).

1
αMS

i (µ)
=

1
αMS

G (µ)
+

1
12π

(Ci − CG) +
1

12π
Trt2

GiV − 4πλMS
i (µ). (D.3.33)

In MS scheme, however, the relation between the couplings is also determined as Eq. (D.3.32).
Therefore, Ci and CG should be satisfied the equation

1
12π

(Ci − CG) +
1

12π
Trt2

GiV = 0 (D.3.34)

For example, let us consider the case that the unified gauge group is SU(5) and the residual
gauge group is the standard model one, SU(3)C × SU(2)L × U(1)Y. In this case, CG = 5. In
addition, massive gauge fields which are integrated out are transformed under the standard
model gauge as (3, 2, 5/6). Therefore, for i = 1, 2, 3, we have

(C1 − 5) +
(

5
6

)2
× 2 × 2 × 3 × 3

5
= 0

(C2 − 5) +
1
2
× 2 × 3 = 0

(C3 − 5) +
1
2
× 2 × 2 = 0

(D.3.35)
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D.3 One-loop calculation for threshold correction

Therefore, the relation between gauge couplings in MS and DR scheme is obtained as fol-
lows:

1
αDR

S (µ)
=

1
αMS

S (µ)
− 1

4π

1
αDR

2 (µ)
=

1
αMS

2 (µ)
− 1

6π

1
αDR

1 (µ)
=

1
αMS

1 (µ)

(D.3.36)
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E Renormalization Group Equations
In this appendix, we give the renormalization effects for some scales. At first, the renor-
malization group equations (RGEs) for the gauge couplings and Yukawa couplings are dis-
played in SUSY case and non-SUSY case at 2-loop level. Next, we will give the short-distance
renormalization effects of the Wilsonian coefficients including those of Yukawa couplings;
“short-distance” means the high-energy region between the GUT scale and the electroweak
scale. Finally, the QCD corrections (which is the renormalization effects between the elec-
troweak scale and 2 GeV) are given.

E.1 RGEs for gauge couplings and Yukawa couplings
To understand the behavior of the couplings including quantum corrections at high-energy
scale, we need to run these couplings into this scale. By using RGEs, we find these run-
ning couplings at high-energy scale. In general, 1-loop renormalization group equations for
gauge couplings are given by

βg =
dg

d ln µ
=

g3

16π2

[
−11

3
t2(V) + ∑

Dirac Fermions

4
3

t2(F) + ∑
complex scalars

1
3

t2(S)

]

(E.1.1)

where a non-abelian gauge boson couples to Dirac Fermions and complex scalars. t2 denotes
the Casimir invariant defined as Tr[TATB] ≡ t2δAB. In the supersymmetric notation, Weyl
fermions including standard model fermion and gauginos couple to gauge boson. There-
fore, in the supersymmetric theories, this 1-loop RGEs are modified as follows:

βg =
dg

d ln µ
=

g3

16π2

[
−3t2(V) + ∑

Φ
t2(Φ)

]
(E.1.2)

because there are Weyl fermions as gaugino and the complex scalars as superpartners for the
standard model fermions. Note that, in the N = 1 supersymmetric theories, holomorphic
gauge couplings (these are not physical couplings) are exactly determined by this 1-loop
RGEs because of the non-renormalization theorem [95].

In our analysis, we have used the RGEs at 2-loop level. The RGEs for the gauge couplings
at 2-loop level are as follows [94, 102]:

dgi
d ln µ

=
gi

16π2

[
big2

i +
1

16π2

(

∑
j

bijg2
i g2

j − ∑
j=U,D,E

aijg2
i Tr[YjY†

j ]

)]
. (E.1.3)

YU = U, YD = D, YE = E are the Yukawa couplings matrices in the SM. Up to the gaug-
ino threshold, the particle content includes only the SM particles. Thus, the corresponding
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E.1 RGEs for gauge couplings and Yukawa couplings

coefficients are given as;

bij =

⎛

⎝
199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26

⎞

⎠ , bi = (41/10,−19/6,−7), aij =

⎛

⎝
17/10 1/2 3/2

3/2 3/2 1/2
2 2 0

⎞

⎠ .

(E.1.4)

Above the gaugino threshold, we should consider contributions from gauginos. These are
calculated as gauginos are the fermions belonging to the adjoint representation in SU(N).

g3

(4π)2

(
−4

3
· 1

2
N
)
− g5

(4π)4

[
−1

2

(
4N +

20
3

N
)]

N =

⎧
⎪⎪⎨

⎪⎪⎩

g3

(4π)2 · 4
3
+

g5

(4π)4 · 64
3

(SU(2))

g3

(4π)2 · 2 +
g5

(4π)4 · 48 (SU(3))

(E.1.5)

From the gaugino threshold, the coefficients in the RGEs can be changed into

bij =

⎛

⎝
199/50 27/10 44/5

9/10 35/6 12
11/10 9/2 −26

⎞

⎠+

⎛

⎝
0 0 0
0 64/3 0
0 0 48

⎞

⎠

bi = (41/10,−19/6,−7) + (0, 4/3, 2).

(E.1.6)

In addition, in the Standard Model region, we have the 1-loop RGEs for the Yukawa matrices
as follows∗.

dU
d ln µ

=
1

16π2

[
−∑

i
cSM

i g2
i +

3
2

UU† − 3
2

DD† + Y2(S)

]
U

dD
d ln µ

=
1

16π2

[
−∑

i
c′SM

i g2
i +

3
2

DD† − 3
2

UU† + Y2(S)

]
D

dE
d ln µ

=
1

16π2

[
−∑

i
c′′SM

i g2
i +

3
2

EE† + Y2(S)

]
E

(E.1.7)

In these RGEs, the coefficients of the square of the gauge couplings are calculated as;

cSM
i =

(
17
20

,
9
4

, 8
)

, c′SM
i =

(
1
4

,
9
4

, 8
)

, c′′SM
i =

(
9
4

,
9
4

, 0
)

. (E.1.8)

∗In our calculation, we need the RGEs for the gauge couplings at 2-loop level. It is sufficient to take into
account the Yukawa couplings at 1-loop level since these are not appeared until we treat the 2-loop level RGEs
for the gauge couplings.
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E.1 RGEs for gauge couplings and Yukawa couplings

The scalar function Y2 is the trace of the squared Yukawa coupling matrices;

Y2(S) = Tr
[
3UU† + 3DD† + EE†

]
. (E.1.9)

When we estimate the mass of the Higgs boson in the high-scale SUSY scenario, we use the
RGE for the quartic coupling. This RGE is given by,

dλ

d ln µ
=

1
16π2

[
12λ2 −

(
9
5

g2
1 + g2

2

)
λ +

9
4

(
3

25
g4

1 +
2
5

g2
1g2

2 + g2
2

)
+ 4Y2(S)λ − 4H(S)

]
,

(E.1.10)

where

Y2(S) ≡ Tr
[
3UU† + 3DD† + EE†

]
,

H(S) ≡ Tr
[
3(UU†)2 + 3(DD†)2 + (EE†)2

]
.

(E.1.11)

Finally, above the SUSY breaking scale, the particle content includes the SM particles,
the extra Higgs doublet, and these superpartners. In this region, the RGEs for the gauge
coupling are obtained as

dgi
d ln µ

=
gi

16π2

⎡

⎣big2
i +

1
16π2

⎛

⎝∑
j

bijg2
i g2

j − ∑
j=Ũ,D̃,Ẽ

aijg2
i Tr[ỸjỸ†

j ]

⎞

⎠

⎤

⎦ . (E.1.12)

And the corresponding coefficients is calculated as

bij =

⎛

⎝
199/25 27/5 88/5

9/5 25 24
11/5 9 14

⎞

⎠ , bi = (33/5, 1,−3), aij =

⎛

⎝
26/5 14/5 18/5

6 6 2
4 4 0

⎞

⎠ .

(E.1.13)

The boundary condition is what relates Yj in the SM and Ỹj in the MSSM at the SUSY break-
ing scale.

Ũ(MS) =
1

sin β
U(MS)

Ỹj(MS) =
1

cos β
Yj(MS) (j = D, E)

(E.1.14)

where MS is SUSY breaking scale. In the MSSM region, we have the 1-loop RGEs for the
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E.2 RGEs for Wilson coefficients as short-distance renormalization effects

Yukawa matrices as follows.

dŨ
d ln µ

=
1

16π2

[
−∑

i
cMSSM

i g2
i + 3ŨŨ† + D̃D̃† + Tr(3ŨŨ†)

]
Ũ

dD̃
d ln µ

=
1

16π2

[
−∑

i
c′MSSM

i g2
i + 3D̃D̃† + ŨŨ† + Tr(3D̃D̃† + ẼẼ†)

]
D̃

dẼ
d ln µ

=
1

16π2

[
−∑

i
c′′MSSM

i g2
i + 3ẼẼ† + Tr(3D̃D̃† + ẼẼ†)

]
Ẽ

(E.1.15)

In these RGEs, the coefficients of the square of the gauge couplings are calculated as;

cMSSM
i =

(
13
15

, 3,
16
3

)
, c′MSSM

i =

(
7
15

, 3,
16
3

)
, c′′MSSM

i =

(
9
5

, 3, 0
)

. (E.1.16)

E.2 RGEs for Wilson coefficients as short-distance renormalization ef-
fects

In this subsection, we introduce the RGEs for the Wilson coefficients of the dimension-five
operators and the four-fermi operators.

First, in order to calculate RGEs for Wilson coefficients of dimension-five operators, we
need to only calculate the anomalous dimensions of each external fields because of non-
renormalization theorem. First, since the RGEs for the Yukawa couplings are obtained by
using the same procedure, we derive them. For the superpotential defined as

W =
1
3!

yijkΦiΦjΦk, (E.2.1)

the β function for this coupling is given by

dyijk

d ln µ
= γi

nynjk + γ
j
nyink + γk

nyijn. (E.2.2)

where γi
j is the anomalous dimension for chiral superfield Φi. The Yukawa terms in MSSM

are given by

WYukawa = Yu
ij QiUC

j Hf + Yd
ijQiDC

j H f + Ye
ijLiEC

j H f . (E.2.3)

These terms give rise to anomalous dimensions for each external fields γi = −d ln Zi/d ln µ
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E.2 RGEs for Wilson coefficients as short-distance renormalization effects

where Zi is the wave-function renormalization. For quark chiral superfields, we have

(γQ)
n
i =

1
16π2

[
Yu

ij (Y
u†)jn + Yd

ij(Y
d†)jn −

(
8
3

g2
3 +

3
2

g2
2 +

1
30

g2
1

)
δn

i

]
,

(γU)
n
i =

1
16π2

[
2Yu

ij (Y
u†)jn −

(
8
3

g2
3 +

8
15

g2
1

)
δn

i

]
,

(γD)
n
i =

1
16π2

[
2Yd

ij(Y
d†)jn −

(
8
3

g2
3 +

2
15

g2
1

)
δn

i

]
.

(E.2.4)

where g1, g2 and g3 are gauge couplings for U(1)Y, SU(2)L and SU(3)C, respectively. i, j, · · ·
denote the flavor indices. Then, for lepton chiral superfields, we have anomalous dimen-
sions for these external line:

(γL)
n
i =

1
16π2

[
Ye

ij(Y
e†)jn −

(
3
2

g2
2 +

3
10

g2
1

)
δn

i

]
,

(γE)
n
i =

1
16π2

[
2Ye

ij(Y
e†)jn − 6

5
g2

1δn
i

]
.

(E.2.5)

For these anomalous dimensions, i, j, · · · are the flavor indices. Finally, for Higgs chiral
superfields, we have anomalous dimensions for these external line

(γHf ) =
1

16π2

[
3Yu

ij (Y
u†)ji −

(
3
2

g2
2 +

3
10

g2
1

)]
,

(γH f
) =

1
16π2

[
3Yd

ij(Y
d†)ji + Ye

ij(Y
e†)jn −

(
3
2

g2
2 +

3
10

g2
1

)] (E.2.6)

The RGEs of Yukawa couplings are given by combining these contributions.

dYu
ij

d ln µ
=

1
16π2

[
3(YuYu†)n

i + Yd
ik(Y

d†)kn +

(
3TrYuYu† − 16

3
g2

3 − 3g2
2 −

13
15

g2
1

)
δn

i

]
Yu

nj

dYd
ij

d ln µ
=

1
16π2

[
(YuYu†)n

i + 3(YdYd†)n
i +

(
3TrYdYd† + TrYeYe† − 16

3
g2

3 − 3g2
2 −

7
15

g2
1

)
δn

i

]
Yd

nj

dYe
ij

d ln µ
=

1
16π2

[
2(YeYe†)n

i +

(
3TrYdYd† + TrYeYe† − 3g2

2 −
9
5

g2
1

)]
Ye

nj

(E.2.7)

These RGEs are consistent with the results as mentioned above.
Next, let us consider the RGEs for the Wilson coefficients of dimension-five operators.

For dimension-five operators, the superpotential is given by

W5 = CL
iijk(QiQi)(QjLk) + CR

ijklU
C
i EC

j UC
k DC

l . (E.2.8)
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E.2 RGEs for Wilson coefficients as short-distance renormalization effects

RGEs for these Wilson coefficients are easily obtained due to non-renormalization theorem.

dCL
iijk

d ln µ
= γn

i CL
nijk + γn

i CL
injk + γn

j CL
iink + γn

k CL
iijn

dCR
ijkl

d ln µ
= γn

i CR
njkl + γn

j CR
inkl + γn

k CR
ijnl + γn

l CR
ijkn

(E.2.9)

where γi
n denotes, of course, anomalous dimension of chiral superfield. This RGE for LLLL

operator is obtained as:

dCL
iijk

d ln µ
=

1
16π2

[
2
(
(YuYu†)i

i + (YdYd†)i
i

)

+ (YuYu†)j
j + (YdYd†)j

j +(YeYe†)k
k − 8g2

3 − 6g2
2 −

2
5

g2
1

]
CL

iijk.
(E.2.10)

The RGE for the RRRR operators is obtained as the following form:

dCR
ijkl

d ln µ
=

1
16π2

[
2(YuYu†)i

i + 2(YeYe†)j
j + 2(YuYu†)k

k + 2(YdYd†)l
l − 8g2

3 −
12
5

g2
1

]
CR

ijkl.

(E.2.11)
Next, we introduce the RGEs for the four-fermi operators based on [84]. The effective

operators for nucleon decay are

O(1)
ijkl = ϵabcϵrs(da

iRub
jR)(q

cr
kLls

lL),

O(2)
ijkl = ϵabcϵrs(qar

iLqbs
jL)(u

c
kRelR),

O(3)
ijkl = ϵabcϵruϵst(qar

iLqbs
jL)(q

ct
kLlu

lL),

O(4)
ijkl = ϵabc(da

iRub
jR)(u

c
kRelR).

(E.2.12)

For these operators, we obtain the relation between the bare and renormalized operators

O(1)
0 ijkl =

[
1 +

1
4πϵ

(
2αS +

9
4

α2 +
11
20

α1

)]
O(1)

ijkl

O(2)
0 ijkl =

[
1 +

1
4πϵ

(
2αS +

9
4

α2 +
23
20

α1

)]
O(2)

ijkl

O(3)
0 ijkl =

[
1 +

1
4πϵ

(
2αS +

3
2

α2 +
1

10
α1

)]
O(3)

ijkl +
2α2
4πϵ

(
O(3)

jikl +O(3)
kjil +O(3)

ikjl

)

O(4)
0 ijkl =

[
1 +

1
4πϵ

(
2αS +

3
5

α1

)]
O(4)

ijkl +
2α1
4πϵ

O(4)
ikjl

(E.2.13)
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where α1 is the unified U(1) gauge coupling.
Now we consider the effective Lagrangian for our calculations. For the p → K+ + ν̄

mode, we consider the operators:

C(1)
1133(µ)O1(µ) ≡ C(1)

1133(µ)ϵabcϵrs(da
1Rub

1R)(q
cr
3Lls

3L),

C(1)
2133(µ)O2(µ) ≡ C(1)

2133(µ)ϵabcϵrs(da
2Rub

1R)(q
cr
3Lls

3L),

C(3)
221l(µ)O3(µ) ≡ C(3)

221l(µ)ϵabcϵrsϵtu(qar
2Lqbs

2L)(q
ct
1Llu

lL),

C(3)
221l(µ)O4(µ) ≡ C(3)

221l(µ)ϵabcϵrsϵtu(qar
3Lqbs

3L)(q
ct
1Llu

lL).

(E.2.14)

Then, we obtain the ratio of the Wilson coefficients between the SUSY braking scale MS
and the electroweak scale mZ:

C(1)
a133(MS)

C(1)
a133(mZ)

=

(
αS(mZ)
αS(MS)

)−2/b3
(

α2(mZ)
α2(MS)

)−9/4b2
(

α1(mZ)
α1(MS)

)−11/20b1

C(3)
aabc(MS)

C(3)
aabc(mZ)

=

(
αS(mZ)
αS(MS)

)−2/b3
(

α2(mZ)
α2(MS)

)−15/2b2
(

α1(mZ)
α1(MS)

)−1/10b1

.

(E.2.15)

For the p → π0 + e+ mode, we consider the operators:

C(1)
1111(µ)O

(1)
ijkl = ϵabcϵrs(da

1Rub
1R)(q

cr
1Lls

1L),

C(2)
1111(µ)O

(2)
1111 = ϵabcϵrs(qar

1Lqbs
1L)(u

c
1Re1R).

(E.2.16)

Then, we obtain the ratio of the Wilson coefficients between the SUSY braking scale MS and
the electroweak scale mZ:

C(1)
1111(MS)

C(1)
1111(mZ)

=

(
αS(mZ)
αS(MS)

)−2/b3
(

α2(mZ)
α2(MS)

)−9/4b2
(

α1(mZ)
α1(MS)

)−11/20b1

C(2)
1111(MS)

C(2)
1111(mZ)

=

(
αS(mZ)
αS(MS)

)−2/b3
(

α2(mZ)
α2(MS)

)−9/4b2
(

α1(mZ)
α1(MS)

)−23/12b1

.

(E.2.17)

E.3 QCD corrections as long-distance renormalization effects
Below the electroweak scale, all we have to do is to consider the QCD corrections for Yukawa
couplings and Wilson coefficients. First, we introduce the QCD correction for Yukawa inter-
action. For the external Fermion line, divergent term is obtained from gluon 1-loop diagram
as the following form:

∑
A
(igTA)2

∫ dDk
(2π)D

i
( ̸p + k̸)

γν−igνµ

k2 γµ =
ig2

16π2
2
ϵ

4
3
̸p + (finite.) (E.3.1)
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Figure 19: QCD corrections for Yukawa interaction

where p is external momentum of Fermion. Thus, this divergence is absorbed by the wave-
function renormalization defined as

Ψ0Ψ0 → ZΨΨΨ
= ΨΨ + (ZΨ − 1)ΨΨ,

(E.3.2)

where the second term plays a role as a counter term absorbing divergence. Then, we have
to absorb the divergent contribution Eq. (E.3.1) by ZΨ

ZΨ = 1 − g2

16π2
2
ϵ

4
3
+O(g4). (E.3.3)

Similarly, the gluon 1-loop correction for the Yukawa coupling is given by

∑
A
(igTA)2iy

∫ dDk
(2π)D

i
k̸

γν−igνµ

k2 γµ i
k̸
=

ig2y
16π2

2
ϵ

16
3

+ (finite.). (E.3.4)

where y is Yukawa coupling constant. We make this divergence absorbed by using renor-
malization factor of this composite operator and wave-function renormalization.

y0Φ0Ψ0Ψ0 → yΦΨΨ +
(
ZΨZy − 1

)
yΦΨΨ (E.3.5)

where Φ is the color-singlet scalar field and y0 = Zyµϵ/2y. Since the divergent term must be
absorbed by ZΨZy, we obtain Zy as

Zy = 1 − g2

16π2
8
ϵ

(E.3.6)

and we also obtain anomalous dimension by using g2 = µ−ϵZ−2
g g2

0

dy
d ln µ

= −
d ln Zy

d ln µ
y = − 8

16π2 g2y, γy =
8

16π2 g2. (E.3.7)

Since β function for QCD coupling is given by

β(g) ≡ dg
d ln µ

=
1

16π2 bSg3, (E.3.8)
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Figure 20: QCD corrections for four-Fermi operator

we treat a Yukawa coupling y as the function of g as follows:

dy
dg

= − 8y
bSg

⇒ ln
y(µ)
y(µ0)

= ln
[

αS(µ)
αS(µ0)

]−4/bS
(E.3.9)

where bS depends on the number of flavor Nq and is determined as

bS = −
(

11 − 2
3

Nq

)
. (E.3.10)

Thus, we can find easily the relation between Yukawa coupling at mZ scale and that at 2GeV
scale

y(mZ) =

[
αS(mZ)
αS(mb)

]12/23 [ αS(mb)
αS(2GeV)

]12/25
y(2GeV) (E.3.11)

Similarly, we can obtain the relation between the Wilson coefficient of four-Fermi operator
at mZ and at 2GeV. Now, we consider the case that the bare four-Fermi operator is defined
as

λ0Ψ0
qa Ψ0

qb
Ψ0

qc Ψ
0
ld → λΨqa Ψqb Ψqc Ψld +

(
Z3/2

Ψ Zλ − 1
)

λΨqa Ψqb Ψqc Ψld (E.3.12)

where Ψq’s correspond to quarks and Ψl corresponds to lepton. From QCD correction dia-
grams for four-Fermi operator described in Fig. 20, we obtain the divergence term as follows:

(
Z3/2

Ψ Zλ − 1
)
= − 4g2

16π2
2
ϵ

(E.3.13)

We have the anomalous dimension for four-Fermi operator from Zλ

Zλ = 1 − 4g2

16π2
1
ϵ

, γλ =
d ln Zλ

d ln µ
=

4g2

16π2 (E.3.14)
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E.3 QCD corrections as long-distance renormalization effects

that is, we have the relation between the gauge coupling and the coupling of the four-fermi
operator;

dλ

dg
= − 4λ

bSg
⇒ ln

λ(µ)
λ(µ0)

= ln
[

αS(µ)
αS(µ0)

]−2/bS

. (E.3.15)

Therefore, we obtain the long-range effect for the four-fermi operator as

λ(2GeV) =

[
αS(mZ)
αS(mb)

]−6/23 [ αS(mb)
αS(2GeV)

]−6/25
λ(mZ). (E.3.16)
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